Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (7): 1-6    DOI: 10.11868/j.issn.1001-4381.2015.001109
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究
袁佟1,2, 邓畅光2,3,4, 毛杰2,3,4, 邓春明2,3,4, 邓子谦2,3
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 广州有色金属研究院 新材料研究所, 广州 510650;
3. 现代材料表面工程国家工程实验室, 广州 510650;
4. 广东省现代材料表面工程重点实验室, 广州 510650
Preparation and Thermal Conductivity of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-physical Vapor Deposition
YUAN Tong1,2, DENG Chang-guang2,3,4, MAO Jie2,3,4, DENG Chun-ming2,3,4, DENG Zi-qian2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Institute of New Materials, Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510650, China;
3. National Engineering Lab for Modern Materials Surface Engineering Technology, Guangzhou 510650, China;
4. Guangdong Provincial Key Lab for Modern Materials Surface Engineering Technology, Guangzhou 510650, China
全文: PDF(2372 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过等离子喷涂-物理气相沉积(PS-PVD)技术在3种不同工艺参数下制备7YSZ热障涂层。采用XRD和SEM分析涂层的相结构和微观组织,利用激光脉冲法测量涂层不同温度下的热导率。结果表明:通过调整工艺参数中电流的大小和等离子气体成分,可以制备截面呈柱状、致密层状和柱-颗粒状混合组织结构,表面呈"菜花"状或起伏的多峰状的YSZ热障涂层。涂层的相结构由粉末的单斜相氧化锆(m-ZrO2)转变为涂层中的四方相氧化锆(t-ZrO2),并保留至室温。在700~1100℃时,YSZ涂层的热导率随着温度的升高而增大。柱状晶结构涂层因具有较大的孔隙率,可以有效降低涂层的热导率,其热导率为1.0~1.2W·m-1·K-1;而层状结构涂层由于比较致密,其热导率相对较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁佟
邓畅光
毛杰
邓春明
邓子谦
关键词 等离子喷涂-物理气相沉积7YSZ热障涂层热导率    
Abstract:The 7YSZ thermal barrier coating was prepared with three different process parameters by plasma spraying-physical vapor deposition(PS-PVD). The phase structure and microstructure of the coating were analyzed using XRD and SEM methods, and the thermal conductivity of coating was measured under different temperatures using laser pulse method. The results show that PS-PVD technology can prepare YSZ thermal barrier coating with different structures of columnar section,dense lamellar and column-particle mixed structure with surface "cauliflower" shape or undulating peaks by adjusting the process parameters, such as the current and plasma gas composition.Phase structure of 7YSZ coating is transformed from m-ZrO2 powder to t-ZrO2 coating in the process of preparation and stays in room temperature. The thermal conductivity of 7YSZ coating increases with the rising of temperature between 700-1100℃, the columnar crystal coating with higher porosity can effectively reduce the thermal conductivity of coating and the thermal conductivity is 1.0-1.2W·m-1·K-1; while layered crystal coating is dense with relatively higher thermal conductivity.
Key wordsplasma spray-physical vapor deposition    7YSZ    thermal barrier coating    thermal conductivity
收稿日期: 2015-09-07      出版日期: 2017-07-21
中图分类号:  TQ174  
通讯作者: 邓畅光(1970-),男,教授,硕士,从事专业:材料表面工程,联系地址:广州市天河区长兴路363号广州有色金属研究院新材料研究所(510650),E-mail:dcg@163.com     E-mail: dcg@163.com
引用本文:   
袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
YUAN Tong, DENG Chang-guang, MAO Jie, DENG Chun-ming, DENG Zi-qian. Preparation and Thermal Conductivity of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-physical Vapor Deposition. Journal of Materials Engineering, 2017, 45(7): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001109      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/1
[1] 刘纯波,林锋,蒋显亮.热障涂层的研究现状与发展趋势[J].中国有色金属学报,2007,17(1):1-13. LIU C B,LIN F,JIANG X L.Current situation and development trend of thermal barrier coatings[J].China Journal of Nonferrous Metals,2007,17(1):1-13.
[2] 曹学强.热障涂层材料[M].北京:科学出版社,2007. CAO X Q.Thermal Barrier Coating Materials[M].Beijing:Science Press,2007.
[3] SZYMANSKI K,GÓRAL M,KUBASZEK T,et al.Microstructure of TBC coatings deposited by HVAF and PS-PVD methods[J].Solid State Phenomena,2015,227:373-376.
[4] CHEN Q Y,LI C X,ZHAO J Z,et al.Microstructure of YSZ coatings deposited by PS-PVD using 45kW shrouded plasma torch[J].Materials & Manufacturing Processes,2015,31(9):1183-1191.
[5] CHEN Q Y,PENG X Z,YANG G J,et al.Characterization of plasma jet in plasma spray-physical vapor deposition of YSZ using a <80kW shrouded torch based on optical emission spectroscopy[J].Journal of Thermal Spray Technology,2015,24(6):1038-1045.
[6] 张小锋,周克松.等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J].无机材料学报,2015,30(3):287-293. ZHANG X F,ZHOU K S.The PS-PVD deposition 7YSZ coating deposition mechanism and corrosion failure mechanism of CMAS[J].Journal of Inorganic Materials,2015,30(3):287-293.
[7] KOTOWSKI S,SIENIAWSKI J,MARCIN D.Microstructure and isothermal oxidation resistance of thermal barrier coatings deposited by LPPS,CVD and PS-PVD methods on Inconel 617 nickel superalloy[J].Solid State Phenomena,2015,227:325-328.
[8] ZHANG X,ZHOU K,LIU M,et al.Toughness and elasticity behaviors in nano-structured 7wt.%Y2O3 stabilized ZrO2 coating[J].Surface & Coatings Technology,2015,276:316-319.
[9] NIESSEN K V,GINDRAT M.Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase[J].Journal of Thermal Spray Technology,2011,20(4):736-743.
[10] JOHNSTON A L,HALL A C,MCCLOSKEY J F.Effect of process inputs on coating properties in the twin-wire arc zinc process[J].Journal of Thermal Spray Technology,2013,22(6):856-863.
[11] NIESSEN K V,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD64[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.
[12] GAO L,GUO H,WEI L,et al.Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition[J].Ceramics International,2015,41(7):8305-8311.
[13] 杨德明,高阳.大气和低压等离子喷涂ZrO2-8%Y2O3涂层及性能研究[J].热喷涂技术,2012,4(3):13-18. YANG D M,GAO Y.Effect of plasma spraying methods and morphology of powder on the microstructure of ZrO2-8%Y2O3 coating[J].Atmospheric and Low Pressure Plasma Spraying,2012,4(3):13-18.
[14] MAUER G,HOSPACH A,ZOTOV N,et al.Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying[J].Journal of Thermal Spray Technology,2013,22(2-3):83-89.
[15] SECHENOV D A,SVETLICHNYI A M,KLOVO A G,et al.Optimization of the construction of the reaction chamber on temperature distribution in a semiconductor plate on heating by incoherent radiation[J].Journal of Engineering Physics and Thermophysics,1991,60(1):112-116
[16] 周洪,李飞,何博,等.等离子喷涂热障涂层的隔热性分析[J].中国有色金属学报,2007,17(10):1609-1615. ZHOU H,LI F,HE B,et al.Analysis of thermal plasma spraying thermal barrier coating[J].The Chinese Journal of Nonferrous Metals,2007,17(10):1609-1615.
[17] WANG Y,WU W,ZHENG X,et al.Relationship between the microstructure and thermal conductivity of plasma-sprayed ZrO2 coatings[J].Journal of Thermal Spray Technology,2011,20(6):1177-1182.
[18] MAUER G,JARLIGO M O,REZANKA S,et al.Novel opportunities for thermal spray by PS-PVD[J].Surface & Coatings Technology,2014,268:52-57.
[19] 王焱,李定骏.等离子喷涂热障涂层组织结构及热导率研究[J].东方汽轮机,2014,(3):75-78. WANG Y,LI D J.Study on the structure and thermal barrier coating rate of plasma spraying[J].Dongfang Steam Turbine,2014,(3):75-78.
[1] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[2] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面改性对SiCp/Cu复合材料热物理性能的影响[J]. 材料工程, 2016, 44(8): 11-16.
[3] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[4] 刘菁伟, 杨文彬, 谢长琼, 张凯, 范敬辉. HDPE/EG/石蜡导热定形相变材料的制备及性能[J]. 材料工程, 2015, 43(4): 42-46.
[5] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面设计对Sip/Al复合材料组织和性能的影响[J]. 材料工程, 2014, 0(8): 61-66.
[6] 黄亮亮, 孟惠民, 唐静. 纳米结构热障涂层研究进展[J]. 材料工程, 2014, 0(8): 105-114.
[7] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[8] 董建民, 李嘉荣, 牟仁德, 赵金乾, 史振学, 刘世忠. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, 0(6): 51-55.
[9] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[10] 何箐, 屈轶, 汪瑞军, 王伟平. DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J]. 材料工程, 2014, 0(5): 66-72.
[11] 段远源, 于海童, 王晓东, 赵俊杰. 含水量及相关散射对气凝胶辐射传热的影响[J]. 材料工程, 2014, 0(2): 65-69.
[12] 何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平. 一种新型CMAS耦合条件下热障涂层热循环实验方法[J]. 材料工程, 2014, 0(12): 92-98.
[13] 周轶群, 佟文伟, 刘芳, 张开阔. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014, 0(1): 19-23.
[14] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[15] 蔡妍, 易军, 陆峰, 陶春虎. 热障涂层金属元素扩散阻挡层研究进展[J]. 材料工程, 2011, 0(9): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn