Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 99-105    DOI: 10.11868/j.issn.1001-4381.2015.001112
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能
曾斌1,2, 陈小华2, 汪次荣2
1. 湖南文理学院 机械工程学院, 湖南 常德 415000;
2. 湖南大学 材料科学与工程学院, 长沙 410082
Synthesis and Photocatalytic Properties of Reduced Graphene Oxides Loaded-nano ZnS/CuS Heterostructures
ZENG Bin1,2, CHEN Xiao-hua2, WANG Ci-rong2
1. College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, China;
2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China
全文: PDF(4438 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用微波辅助加热方法制备石墨烯负载硫化锌纳米颗粒,在其基础上,通过离子交换反应形成石墨烯负载硫化锌/硫化铜异质结的复合物(rGO-ZnS/CuS)。通过SEM,TEM,XRD等手段对样品进行形貌观察和物相分析,并分别讨论氧化石墨烯含量、不同硫源和微波加热时间对复合物形貌和光催化性能的影响。结果表明:硫代乙酰胺为硫源,微波反应时间为30min,氧化石墨烯质量分数为10%时,能够在石墨烯表面获得均匀分布的硫化锌/硫化铜异质纳米结的复合物,在可见光照射下,150min内降解水中81.2%的甲基橙,显示出优异的光催化效果,异质结内形成的界面电子转移现象以及石墨烯作为电子受体进一步促进内部光生电子空穴的分离是提高光催化效果的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾斌
陈小华
汪次荣
关键词 还原氧化石墨烯异质结光催化性能    
Abstract:The reduced graphene oxides(rGO) loaded-nano ZnS nanoparticles were fabricated by microwave heating method and by ion exchanged reaction reduced graphene oxides(rGO) loaded-nano ZnS/CuS heterostructures were obtained. The structure, morphology were characterized via scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction pattern(XRD). The effect of the mass fraction of graphene oxides, sulfur source and microwave heating time on the morphology and photocatalyitc performance were discussed. The results show that graphene uniformly loaded-nano ZnS/CuS heterostructures are obtained on the condition of graphene mass fraction of 10%, thioacetamide acting as sulfur source, microwave heating time is 30min. rGO-loaded nano ZnS/CuS heterostructures nanoparticles enhance photocatalytic performance with 81.2% decomposition of MO in 150min under visible light, demonstrating the excellent photocatalytic performance. The high visible photocatalytic performances are attributed to photoinduced interfacial charge transfer in the nano heterostructures and their further separation and transfer by rGO.
Key wordsreduced graphene oxide    heterostructure    photocatalytic performance
收稿日期: 2015-09-08      出版日期: 2017-12-19
中图分类号:  TB34  
通讯作者: 曾斌(1978-),男,博士,研究方向:碳基复合材料,联系地址:湖南省常德市洞庭大道170号湖南文理学院机械工程学院(415000),E-mail:21467855@qq.com     E-mail: 21467855@qq.com
引用本文:   
曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
ZENG Bin, CHEN Xiao-hua, WANG Ci-rong. Synthesis and Photocatalytic Properties of Reduced Graphene Oxides Loaded-nano ZnS/CuS Heterostructures. Journal of Materials Engineering, 2017, 45(12): 99-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001112      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/99
[1] 赵斯琴,娜米拉,长山. 钛酸钠纳米线制备TiO2纳米线的反应条件[J]. 材料工程,2015,43(2):58-62. ZHAO S Q,NAMILA,ASUHA. Reaction conditions for synthesis of TiO2 nanowires from sodium titanate nanowires[J]. Journal of Materials Engineering,2015,43(2):58-62.
[2] 刘春玲,毕菲非,张文杰, 等. 负载型SrTiO3/HZSM-5光催化材料制备与性能研究[J]. 材料工程,2016,44(2):22-27. LIU C L,BI F F,ZHANG W J,et al. Preparation and properties of supported SrTiO3/HZSM-5 photocatalyst[J]. Journal of Materials Engineering,2016,44(2):22-27.
[3] 鲍艳,张永辉,马建中. 溶液法制备ZnO纳米阵列的影响因素及光催化活性[J]. 材料工程,2015,43(8):19-24. BAO Y, ZHANG Y H, MA J Z,et al. Influence factors and photocatalytic activity of ZnO nanoarrays synthesiszed via solution method[J]. Journal of Materials Engineering,2015,43(8):19-24.
[4] HE T S,MA H H,ZHOU Z F,et al. Preparation of ZnS-Fluoropolymer nanocomposites and its photocatalytic degradation of methylene blue[J]. Polymer Degradation and Stability,2009,94(12):2251-2256.
[5] WU X,LI K,WANG H. Facile synthesis of ZnS nanostructured spheres and their photocatalytic properties[J]. Journal of Alloys and Compounds,2009,487:537-544.
[6] MURUGANANDHAM M,AMUTHA R,REPO E,et al. Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye[J].Journal of Photochemistry and Photobiology A:Chemistry,2010,216:133-141.
[7] SHEN S L,WANG Q B. Rational tuning the optical properties of metal sulfide nanocrystals and their applications[J]. Chemistry of Materials,2013,25(8):1166-1178.
[8] ZHANG Y,ZHANG N,TANG Z R,et al. Graphene transforms wide band gap ZnS to a visible light photocatalyst. the new role of graphene as a macromolecular photosensitizer[J]. ACS Nano,2012,6(11):9777-9779.
[9] MICHAEL J C,GALIT L, DENNIS W,et al. Synthesis of optically active ZnS-carbon nanotube anocomposites in supercritical carbon dioxide via a single source diethyldithiocarbamate precursor[J]. Industrial and Engineering Chemistry Research,2012,51(36):11710-11716.
[10] HUA H T,WANG X B,LIU F M,et al. Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites:optical and photocatalytic properties[J]. Synthetic Metals,2011,161:404-410.
[11] 杨文彬,张丽,刘菁伟,等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程,2015,43(3):91-97. YANG W B,ZHANG L,LIU J W,et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering,2015,43(3):91-97.
[12] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程,2015,43(2):96-102. ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J]. Journal of Materials Engineering,2015,43(2):96-102.
[13] 刘欣伟,陈勇,陈昌兵, 等. N掺杂纳米TiO2/电气石复合材料的制备及其光催化性能[J]. 材料工程,2016,44(6):104-109. LIU X W, CHEN Y, CHEN C B, et al. Preparation and photocatalytic activity of nitrogen-doped nano TiO2/tourmaline composites[J]. Journal of Materials Engineering,2016,44(6):104-109.
[14] LI C X,JIANG D Y,ZHANG L L,et al. Controlled synthesis of ZnS quantum dots and ZnS quantum flakes with graphene as a template[J]. Langmuir,2012,28:9729-9734.
[15] ZHANG J,YU J G,ZHANG Y M,et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer[J]. Nano Letters,2011,11:4774-4779.
[16] OFFEMAM R,HUMMERS W. Preparation of graphitic oxide[J]. J Am Chem Soc,1958,80(6):1339.
[17] ZENG B,ZENG W J. Ion-exchange synthesis of graphene loaded-ZnS/Bi2S3 nanoplates with high photocatalytic activity[J]. Digest Journal of Nanomaterials and Biostructures,2016,11(4):1105-1111.
[18] ZENG B,LONG H. ZnS nanoflowers on graphene for use as a high-performance photocatalyst[J]. Nano,2014,9(8):1450097-1450104.
[19] ZENG B,CHEN X H,NING X T,et al. Electrostatic-assembly three-dimensional CNTs/rGO implanted Cu2O composite spheres and its photocatalytic properties[J]. Applied Surface Science,2013,276:482-486.
[20] LIU S,TIAN J Q,WANG L,et al. One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and tis application to photocatalytic degradation of dyes[J]. Catalysis Science and Technology,2012(2):339-344.
[1] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[2] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[3] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[4] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[5] 刘淑玲, 韩晓莉, 仝建波. Ag/InP复合材料的制备、表征及其性能[J]. 材料工程, 2017, 45(10): 18-22.
[6] 郝红英, 王茜, 王文俊. CRGP柔性导电薄膜及其超级电容器制备与性能[J]. 材料工程, 2015, 43(7): 26-31.
[7] 张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
[8] 赵斯琴, 娜米拉, 长山. 钛酸钠纳米线制备TiO2纳米线的反应条件[J]. 材料工程, 2015, 43(12): 58-62.
[9] 钱天才, 牟雷, 周烈兴. TiO2掺杂Ce和La离子薄膜的微结构与光催化性能[J]. 材料工程, 2010, 0(1): 58-61.
[10] 郭子斌, 赵宏生, 胡红坡. SiO2/TiO2复合薄膜光催化性能的研究[J]. 材料工程, 2008, 0(12): 38-40,45.
[11] 郭莉, 王丹军, 李东升, 黄静, 王继武. ZnS微球的水热法合成与光催化活性[J]. 材料工程, 2008, 0(10): 287-290,295.
[12] 王暖霞, 孙承华, 胡秀杰, 陈萍, 周树云. 两步法合成ZnO/TiO2异质结构[J]. 材料工程, 2008, 0(10): 350-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn