Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 62-67    DOI: 10.11868/j.issn.1001-4381.2015.001136
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同类型颗粒混合增强铁基复合材料的磨损性能
曹新建, 金剑锋, 曹敬袆, 宗亚平
东北大学 材料科学与工程学院 各向异性与织构教育部重点实验室, 沈阳 110819
Wear Resistance of Iron Matrix Composites Reinforced by Mixed-type Particles
CAO Xin-jian, JIN Jian-feng, CAO Jing-yi, ZONG Ya-ping
Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(13335 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用电流直加热动态热压烧结工艺制备陶瓷颗粒增强铁基复合材料,研究高体积分数(25%,30%,35%)下,单一类型颗粒(SiC,TiC,TiN)及混合类型颗粒(TiC+TiN,SiC+TiN,SiC+TiC)作为增强相对铁基复合材料磨损性能的影响。结果表明:单一类型粒子强化时,TiNP/Fe复合材料的耐磨性最好,TiCP/Fe次之,SiCp/Fe最差。混合粒子作为增强体时,(TiC+TiN)P/Fe复合材料磨损性能显著优于其对应的单一颗粒增强材料;其中粒子含量为30%时,(TiC+TiN)P/Fe复合材料磨损性能提高最大,其磨损量比TiCP/Fe降低了51.9%,比TiNp/Fe复合材料降低了44.1%,体现出可贵的混合增强价值。(SiC+TiC)P/Fe和(SiC+TiN)P/Fe复合材料的磨损性能分别处于对应的两个单一颗粒增强材料之间。磨损表面观察表明,耐磨性好的(TiC+TiN)P/Fe复合材料的磨损机理为磨粒磨损,而(SiC+TiC)P/Fe和(SiC+TiN)P/Fe复合材料除磨粒磨损外还存在明显的疲劳磨损现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹新建
金剑锋
曹敬袆
宗亚平
关键词 陶瓷颗粒铁基复合材料混合颗粒强化磨损性能    
Abstract:Ceramic particles reinforced iron matrix composites were prepared by the dynamic temperature resistant hot press technology. The wear resistance of the iron matrix composites reinforced by monolithic particles (SiC,TiC,TiN) and hybrid particles mixture (TiC+TiN, SiC+TiN, SiC+TiC) under high volume fraction of 25%, 30% and 35% were investigated. The results show that when using monolithic particle as reinforcement, the wear resistance of the TiNp/Fe composite is the best among the three monolithic composites, the TiCP/Fe is the second and the SiCP/Fe is the worst. The wear resistance of (TiC+TiN)P/Fe is better than that of the composites reinforced by corresponding monolithic particles, which represents the great effect of hybrid strengthening. When the volume fraction of particles is 30%, the wear resistance of the (TiC+TiN)P/Fe composite increases the most and the wear loss decreases by 51.9% and 44.1% than that of the TiCP/Fe and TiNp/Fe, respectively. However, the wear resistance of (SiC+TiC)P/Fe and (SiC+TiN)P/Fe composites are between that of the two corresponding monolithic composites. The microstructure of worn surfaces shows that the wear mechanism of the (TiC+TiN)P/Fe composite is abrasive wear, while that of the (SiC+TiN)P/Fe and (SiC+TiC)P/Fe are fatigue and abrasive wear.
Key wordsceramic particle    iron matrix composite    hybrid particle reinforcement    wear resistance
收稿日期: 2015-09-15      出版日期: 2017-08-10
中图分类号:  TB333  
通讯作者: 金剑锋(1978-),男,副教授,博士,研究方向为金属基复合材料及计算材料学,联系地址:辽宁省沈阳市和平区文化路3巷11号东北大学材料科学与工程学院(110819),E-mail:jinjf@atm.neu.edu.cn     E-mail: jinjf@atm.neu.edu.cn
引用本文:   
曹新建, 金剑锋, 曹敬袆, 宗亚平. 不同类型颗粒混合增强铁基复合材料的磨损性能[J]. 材料工程, 2017, 45(8): 62-67.
CAO Xin-jian, JIN Jian-feng, CAO Jing-yi, ZONG Ya-ping. Wear Resistance of Iron Matrix Composites Reinforced by Mixed-type Particles. Journal of Materials Engineering, 2017, 45(8): 62-67.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001136      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/62
[1] AKHTAR F, GUO S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites[J]. Materials Characterization, 2008, 59(1):84-90.
[2] RAMESH C S, SRINIVAS C K, CHANNABASAPPA B H. Abrasive wear behaviour of laser sintered iron-SiC composites[J]. Wear, 2009, 267(11):1777-1783.
[3] TAN H, LUO Z, LI Y, et al. Effect of strengthening particles on the dry sliding wear behavior of Al2O3-M7C3/Fe metal matrix composite coatings produced by laser cladding[J]. Wear, 2015, 324-325(1):36-44.
[4] PAGOUNIS E, LINDROOS V K. Processing and properties of particulate reinforced steel matrix composites[J]. Materials Science and Engineering:A, 1998, 246(1):221-234.
[5] SLIPENYUK A, KUPRIN V, MILMAN Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio[J]. Acta Materialia, 2006, 54(1):157-166.
[6] 刘德宝,崔春翔.TiN颗粒增强铜基复合材料的制备及性能研究[J]. 稀有金属,2004,28(5):856-861. LIU D B, CUI C X. Fabrication and properties of TiN particle reinforced copper matrix composites[J]. Chinese Journal of Rare Metals, 2004, 28(5):856-861.
[7] FALCON-FRANCO L, BEDOLLA-BECERRIL E, LEMUS-RUIZ J, et al. Wear performance of TiC as reinforcement of a magnesium alloy matrix composite[J]. Composites Part B:Engineering, 2011, 42(2):275-279.
[8] ÖZYUREK D, KALYON A, YILDIRIM M, et al. Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks[J]. Materials & Design, 2014, 63(1):270-277.
[9] ZHONG L, YE F, XU Y, et al. Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites[J]. Materials & Design, 2014, 54(1):564-569.
[10] JIANG X, WANG N, ZHU D. Friction and wear properties of in-situ synthesized Al2O3 reinforced aluminum composites[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2352-2358.
[11] SAHIN Y, KILICLI V. Abrasive wear behaviour of SiCp/Al alloy composite in comparison with ausferritic ductile iron[J]. Wear, 2011, 271(11-12):2766-2774.
[12] 李敬勇,刘涛,郭宇文.搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015,43(6):21-25. LI J Y, LIU T, GUO Y W. High-temperature friction and wear properties of friction stir processed aluminum matrix composites[J]. Journal of Materials Engineering, 2015, 43(6):21-25.
[13] YI D, YU P, HU B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites[J]. Materials & Design,2013,52:572-579.
[14] LI J, ZONG B Y, WANG Y, et al. Experiment and modeling of mechanical properties on iron matrix composites reinforced by different types of ceramic particles[J]. Materials Science and Engineering:A, 2010, 527(29-30):7545-7551.
[15] 李杰,宗亚平,王耀勉,等.不同颗粒增强铁基复合材料磨损性能的对比[J].东北大学学报,2010,31(5):660-664. LI J, ZONG Y P, WANG Y M, et al. Comparative investigation on wear behavior of iron matrix composites reinforced by different ceramic particles[J]. Journal of Northeastern University, 2010, 31(5):660-664.
[16] PRASAD D S, SHOBA C. Hybrid composites-a better choice for high wear resistant materials[J]. Journal of Materials Research and Technology, 2014, 3(2):172-178.
[17] 李秀倩,焦健,邱海鹏,等.ZrC/SiC多组元改性C/C复合材料的制备及性能研究[J].航空材料学报,2014,34(3):69-73. LI X Q, JIAO J, QIU H P, et al. Preparation and performance of ZrC/SiC multi-components modified C/C composites[J]. Journal of Aeronautical Materials, 2014,34(3):69-73.
[18] ZHAO D G, LIU X F, PAN Y C, et al. Microstructure and mechanical properties of in situ synthesized (TiB2+Al2O3)/Al-Cu composites[J]. Journal of Materials Processing Technology, 2007, 189(1-3):237-241.
[19] 曹新建,金剑锋,张跃波,等.陶瓷颗粒表面镀铜对陶瓷颗粒增强铁基复合材料性能的影响[J].材料研究学报,2015,29(1):17-24. CAO X J, JIN J F, ZHANG Y B, et al. Electroless copper plating on different types of ceramic particles and its effects on mechanical properties of particulate reinforced iron matrix composites[J].Chinese Journal of Material Research, 2015, 29(1):17-24.
[20] 金培鹏,韩丽,王金辉,等.轻金属基复合材料[M].北京:国防工业出版社,2013.
[21] CAO X J, JIN J F, ZHANG Y B, et al. Mechanical properties of iron matrix composites reinforced by copper-coated hybrid ceramic particles[J]. Journal of Material Research, 2015, 30(15):2360-2368.
[1] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[2] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[3] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[4] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[5] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
[6] 刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
[7] 杨胶溪, 张健全, 常万庆, 王艳芳, 陈虹, 王喜兵. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程, 2016, 44(6): 110-116.
[8] 樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣. 旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能[J]. 材料工程, 2016, 44(10): 47-53.
[9] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[10] 刘胜明, 汤爱涛, 陈敏, 赵子鹏. 钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料[J]. 材料工程, 2015, 43(1): 18-23.
[11] 喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN复合膜的微结构和性能[J]. 材料工程, 2013, 0(7): 35-39.
[12] 施俭亮, 付业伟, 李贺军, 费杰, 朱文婷, 张翔. 炭纤维含量对新型陶瓷摩擦材料性能的影响[J]. 材料工程, 2013, (2): 45-49.
[13] 王海庆, 王成国, 庄光山, 孙毅, 姚永强, 郑树伟. 混杂纤维盘式制动闸片材料的装车实验研究[J]. 材料工程, 2011, 0(7): 56-60.
[14] 杨绿, 周元康, 李屹, 朱湘宁, 张勇杰. 纳米坡缕石润滑油添加剂对灰铸铁HT200摩擦磨损性能的影响[J]. 材料工程, 2010, 0(4): 94-98.
[15] 张守全, 朱警雷, 黄继华, 王海涛, 张华, 赵兴科. 反应等离子喷涂TiC/Fe涂层的摩擦磨损性能研究[J]. 材料工程, 2009, 0(7): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn