Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 99-104    DOI: 10.11868/j.issn.1001-4381.2015.001166
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能
刘用1, 马胜国2, 刘英杰1, 张腾1, 杨慧君1
1. 太原理工大学 表面工程研究所, 太原 030024;
2. 太原理工大学 应用力学与生物医学工程研究所, 太原 030024
Friction and Wear Properties of AlxCrCuFeNi2 High-entropy Alloys with Multi-principal-elements
LIU Yong1, MA Sheng-guo2, LIU Ying-jie1, ZHANG Teng1, YANG Hui-jun1
1. Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(2759 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球-盘式摩擦磨损试验机进行干燥、去离子水、模拟雨水3种环境和3种载荷(5,10,15N)下的正交实验,对比了两种不同结构的高熵合金材料在不同环境、不同载荷下的服役情况,对合金的摩擦磨损性能进行了探索。利用X射线衍射仪、白光干涉仪、光学显微镜以及扫描电子显微镜分别测试样品的物相组成,观察磨痕轮廓,分析合金的金相组织和表面磨损形貌,并对其磨损机理进行了分析。结果表明:Al1.3CrCuFeNi2合金耐磨性明显优于AlCrCuFeNi2合金。AlxCrCuFeNi2合金在液体环境中耐磨性更好。合金在干摩擦条件下,摩擦机理主要为氧化、黏着磨损,塑性变形和磨粒磨损。在水中,磨粒磨损起主导作用,同时具有氧化、腐蚀和轻微的黏着现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘用
马胜国
刘英杰
张腾
杨慧君
关键词 高熵合金摩擦磨损组织结构表面形貌    
Abstract:Orthogonal test was carried out with ball-on-disc friction and wear tester in dry, deionized water, and simulated rain water under three loads (5, 10, 15N), respectively. The behavior of two materials at different loads under different environment was compared, the friction and wear properties of the alloys under the simulated service situation was explored. The composition of the samples was examined by X-ray diffraction (XRD). The contour of wear scars was detected by a three-dimensional surface profiler based on scanning white light interferometry. Optical electron microscope is used to observe the structure. The morphology of the worn surfaces were observed by scanning electron microscopy (SEM) and the wear mechanism was analyzed. Results show that due to the increase of Al, the body-centered cubic phase (bcc) substitutes the face-centered cubic (fcc) which attributed to the high hardness of Al1.3CrCuFeNi2 leading to good wear property. In dry condition, the wear mechanism are oxidation, adhesion, plastic deformation, and mild abrasive wear while in liquid, the abrasive is dominated along with oxidation and slight adhesive behavior.
Key wordshigh-entropy alloy    friction and wear    structure    surface morphology
收稿日期: 2015-09-20      出版日期: 2018-02-01
中图分类号:  TG14  
通讯作者: 杨慧君(1983-),女,副教授,博士,研究方向:高熵合金和非晶复合材料摩擦及腐蚀性能研究,联系地址:山西省太原市太原理工大学表面工程研究所(030024),pineyang@126.com     E-mail: pineyang@126.com
引用本文:   
刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
LIU Yong, MA Sheng-guo, LIU Ying-jie, ZHANG Teng, YANG Hui-jun. Friction and Wear Properties of AlxCrCuFeNi2 High-entropy Alloys with Multi-principal-elements. Journal of Materials Engineering, 2018, 46(2): 99-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001166      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/99
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61:1-93.
[3] TSAI M H, YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters, 2014, 2(3):107-123.
[4] GUO S, LIU C T. Phase stability in high entropy alloys:formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science:Materials International, 2011, 21:433-446.
[5] GAO M C, YEH J W, PETER K W, et al. High-entropy alloys:fundamentals and applications[M]. Cham, Switzerland:Springer International Publishing, 2016.
[6] 张勇,陈明彪, 杨潇. 先进高熵合金技术[M]. 北京:化学工业出版社,2017. ZHANG Y, CHEN M B, YANG X. Advanced technology of high-entropy alloys[M]. Beijing:Chemical Industry Press, 2017.
[7] MA S G, ZHANG S F, QIAO J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloys by Bridgman solidification[J]. Intermetallics, 2014, 54:104-109.
[8] CHEN M R, LIN S J, YEH J W, et al. Microstructure and properties of Al0.5CoCrCuFeNiTix(x=0-2.0) high-entropy alloys[J]. Materials Transactions, 2006, 47(5):1395-1401.
[9] CHUANG M H, TSAI M H, WANG W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59(16):6308-6317.
[10] HSU C Y, SHEU T S, YEH J W, et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J]. Wear, 2010, 268(5):653-659.
[11] WU J M, LIN S J, YEH J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear, 2006, 261(5):513-519.
[12] 于源,谢发勤,张铁邦,等. AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能[J].稀有金属材料与工程, 2012, 41(5):862-866. YU Y, XIE F Q, ZHANG T B, et al. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy[J]. Rare Metal Materials and Engineering, 2012, 41(5):862-866.
[13] 温诗铸,黄平.摩擦学原理[M].2版.北京:清华大学出版社,2002.
[14] 曲建俊, 齐毓霖. Si3N4-高速钢摩擦副在不同润滑剂润滑下的摩擦磨损性能研究[J].摩擦学学报, 1994, 14(3):230-237. QU J J, QI Y L. Study on friction and wear properties of Si3N4 speed steel lubricated by several lubricants[J].Tribology, 1994, 14(3):230-237.
[15] 陈冠国. 金属材料的硬度与磨损[J].唐山工程技术学院学报, 1990(3):75-80. CHEN G G. Hardness and wear of metal materials[J]. Journal of Tangshan Institute of Technology, 1990(3):75-80.
[16] 温丽华,寇宏超,王一川,等. AlxCoCrCuFeNi多主元高熵合金的组织和力学性能[J].特种铸造及有色金属, 2009, 29(6):579-581. WEN L H, KOU H C, WANG Y C, et al. Microstructure and mechanical properties of AlxCoCrCuFeNi multi-element high entropy alloy[J]. Special Casting & Nonferrous Alloys, 2009, 29(6):579-581.
[17] QIU X W, ZHANG Y P, LIU C G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings[J]. Journal of Alloys and Compounds, 2014, 585:282-286.
[18] LANCASTER J K. A review of the influence of environmental humidity and water on friction, lubrication and wear[J]. Tribology International, 1990, 23(6):371-389.
[19] YANG H, LIU Y, ZHANG T, et al. Dry sliding tribological properties of a dendrite-reinforced Zr-based bulk metallic glass matrix composite[J]. Journal of Materials Science & Technology, 2014, 30(6):576-583.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[3] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[4] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[5] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[6] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[7] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[8] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[9] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[10] 汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
[11] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[12] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[13] 黎醒, 蒋炳炎, 吕辉, 周明勇, 翁灿. 疏水植物表面微纳复合结构电铸模芯的制备[J]. 材料工程, 2018, 46(2): 66-72.
[14] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[15] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn