Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 22-30    DOI: 10.11868/j.issn.1001-4381.2015.001177
  综述 本期目录 | 过刊浏览 | 高级检索 |
纳米银的合成及其抗菌应用研究进展
叶伟杰1, 陈楷航1, 蔡少龄1,2, 陈利科2, 钟同苏2, 王小英1
1 华南理工大学 轻工科学与工程学院制浆造纸国家重点实验室, 广州 510640;
2 深圳市美盈森环保科技股份有限公司, 广东 深圳 518107
Progress in Research on Synthesis and Antibacterial Applications of Silver Nanoparticles
YE Wei-jie1, CHEN Kai-hang1, CAI Shao-ling1,2, CHEN Li-ke2, ZHONG Tong-su2, WANG Xiao-ying1
1 State Key Laboratory of Pulp & Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China;
2 Shenzhen MYS Environmental Protection & Technology Co., Ltd., Shenzhen 518107, Guangdong, China
全文: PDF(2670 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 病原微生物严重威胁着人类的健康安全,纳米银作为一种新型抗菌材料,其制备与应用已成为纳米材料领域的研究热点。本文综述了纳米银的主要合成方法,包括多糖法、Tollens试剂法、辐射法、生物法和多金属氧酸盐法等,具有原料广泛、反应温和、成本低廉和环境友好等优点。基于纳米银的优异抗菌性能,总结了纳米银的抗菌机理及其抗菌应用,并展望了纳米银在抗菌涂料、抗菌包装等领域的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶伟杰
陈楷航
蔡少龄
陈利科
钟同苏
王小英
关键词 纳米银合成抗菌机理抗菌应用    
Abstract:Pathogenic microorganism is a serious threat to human health. As a novel kind of antibacterial materials, silver nanoparticles involving their preparation approaches and applications are of great research interest in the field of nanomaterials. This review summarized a summary of synthesis methods of silver nanoparticles, including polysaccharide, Tollens, irradiation, biological and polyoxometalates, which enjoy numerous advantages such as wide range of raw materials, gentle reaction condition, low-cost and environmental-friendly and etc.. Furthermore, based on the antibacterial property of silver nanoparticles, the antibacterial mechanism and applications were described. The development of silver nanoparticles in antibacterial application was also prospected, such as antibacterial coating and antibacterial packaging.
Key wordssilver nanoparticle    synthesis    antibacterial mechanism    antibacterial application
收稿日期: 2015-09-24      出版日期: 2017-09-16
中图分类号:  TB331  
通讯作者: 王小英(1978-),女,教授,博士,研究方向为有机无机纳米杂化材料、生物质基复合材料,联系地址:广东省广州市天河区五山路华南理工大学轻工科学与工程学院,制浆造纸国家重点实验室(510640),E-mail:xyw@scut.edu.cn     E-mail: xyw@scut.edu.cn
引用本文:   
叶伟杰, 陈楷航, 蔡少龄, 陈利科, 钟同苏, 王小英. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程, 2017, 45(9): 22-30.
YE Wei-jie, CHEN Kai-hang, CAI Shao-ling, CHEN Li-ke, ZHONG Tong-su, WANG Xiao-ying. Progress in Research on Synthesis and Antibacterial Applications of Silver Nanoparticles. Journal of Materials Engineering, 2017, 45(9): 22-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001177      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/22
[1] 王严, 宁唤唤, 梁鹰, 等. 细菌耐药性的起源与演变[J]. 基因组学与应用生物学, 2015, 34(4):855-861. WANG Y, NING H H, LIANG Y, et al. The origin of resistance genes and evolution of antibiotic resistance[J]. Genomics and Applied Biology, 2015, 34(4):855-861.
[2] BOUND D J, MURTHY P S, SRINIVAS P. Synthesis and antibacterial properties of 2,3-dideoxyglucosides of terpene alcohols and phenols[J]. Food Chemistry, 2015, 185(1):192-199.
[3] GORRASI G. Dispersion of halloysite loaded with natural antimicrobials into pectins:characterization and controlled release analysis[J]. Carbohydrate Polymers, 2015, 127(1):47-53.
[4] FANG M, CHEN J H, XU X L, et al. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests[J]. International Journal of Antimicrobial Agents, 2006, 27(6):513-517.
[5] 马建中, 惠爱平, 刘俊莉. 纳米ZnO抗菌材料的研究进展[J]. 功能材料, 2014, 24(45):24001-24007. MA J Z, HUI A P, LIU J L. Research progress on antibacterial materials of nano-ZnO[J]. Journal of Functional Materials, 2014, 24(45):24001-24007.
[6] 王静, 水中和, 冀志江, 等. 银系无机抗菌材料研究进展[J]. 材料导报, 2012, 27(9):59-78. WANG J, SHUI Z H, JI Z J, et al. Research progress of the silver-typed inorganic antibacterial materials[J]. Materials Review, 2012, 27(9):59-78.
[7] RAI M, YADAV A, GADE A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances, 2009, 27(1):76-83.
[8] TAO A, SINSERMSUKSAKUL P, YANG P. Polyhedral silver nanocrystals with distinct scattering signatures[J]. Angewandte Chemie International Edition, 2006, 45(28):4597-4601.
[9] SONG J Y, KIM B S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts[J]. Bioprocess and Biosystems Engineering, 2009, 32(1):79-84.
[10] ZHANG Q, LI N, GOEBL J, et al. A systematic study of the synthesis of silver nanoplates:is citrate a "magic" reagent?[J]. Journal of the American Chemical Society, 2011, 133(46):18931-18939.
[11] SHARMA V K, YNGARD R A, LIN Y. Silver nanoparticles:green synthesis and their antimicrobial activities[J]. Advances in Colloid and Interface Science, 2009, 145(1):83-96.
[12] KASTHURI J, VEERAPANDIAN S, RAJENDIRAN N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent[J]. Colloids and Surfaces B:Biointerfaces, 2009, 68(1):55-60.
[13] CREIGHTON J A, BLATCHFORD C G, ALBRECHT M G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength[J]. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics, 1979, 75(1):790-798.
[14] RIVAS L, SANCHEZ-CORTES S, GARCIA-RAMOS J, et al. Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor[J]. Langmuir, 2001, 17(3):574-577.
[15] AHMED K B A, KALLA D, UPPULURI K B, et al. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from acetobacter xylinum NCIM 2526, as a reducing agent and capping agent[J]. Carbohydrate Polymers, 2014, 112(1):539-545.
[16] HASSABO A G, NADA A A, IBRAHIM H M, et al. Impregnation of silver nanoparticles into polysaccharide substrates and their properties[J]. Carbohydrate Polymers, 2015, 122(1):343-350.
[17] YANG N, WEI X F, LI W H. Sunlight irradiation induced green synthesis of silver nanoparticles using peach gum polysaccharide and colorimetric sensing of H2O2[J]. Material Letters, 2015, 154(1):21-24.
[18] YANG N, LI W H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics[J]. Industrial Crops and Products, 2013, 48(1):81-88.
[19] SATHIYANARAYANAN G, KIRAN G S, SELVIN J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine bacillus subtilis MSBN17[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102(1):13-20.
[20] YIN Y D, LI Z Y, ZHONG Z Y, et al. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process[J]. Journal of Materials Chemistry, 2002, 12(3):522-527.
[21] SHEN Z G, LUO Y Q, WANG Q, et al. High-value utilization of lignin to synthesize ag nanoparticles with detection capacity for Hg2+[J]. ACS Applied Materials & Interfaces, 2014, 6(18):16147-16155.
[22] LUO J W, XIE M J, WANG X Y. Green fabrication of quaternized chitosan/rectorite/Ag NP nanocomposites with antimicrobial activity[J]. Biomedical Materials, 2014, 9(1):011001.
[23] LI X Y, LIU B, YE W J, WANG X Y, et al. Effect of rectorite on the synthesis of Ag NP and its catalytic activity[J]. Materials Chemistry and Physics, 2015, 151(1):301-307.
[24] LUO Y Q, SHEN S Q, LUO J W, et al. Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+[J]. Nanoscale, 2015, 7(2):690-700.
[25] LIU B, LI X Y, ZHENG C F, et al. Facile and green synthesis of silver nanoparticles in quaternized carboxymethyl chitosan solution[J]. Nanotechnology, 2013, 24(23):235601.
[26] YU D, YAM V W W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction[J]. Journal of Physical Chemistry B, 2005, 109(12):5497-5503.
[27] SUN Y, XIA Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601):2176-2179.
[28] ZHANG Z, YANG X Y, SHEN M H, et al. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to daphnia magna[J]. Journal of Environmental Sciences, 2015, 35(1):62-68.
[29] EGHBALIFAM N, FROUNCHI M, DADBIN S. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation[J]. International Journal of Biological Macromolecules, 2015, 80(1):170-176.
[30] HE C D, LIU L L, FANG Z G, et al. Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2014, 21(2):542-548.
[31] NIRAIMATHI K, SUDHA V, LAVANYA R, et al. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102(1):288-291.
[32] BAGHIZADEH A, RANJBAR S, GUPTA V K, et al. Green synthesis of silver nanoparticles using seed extract of calendula officinalis in liquid phase[J]. Journal of Molecular Liquids, 2015, 207(1):159-163.
[33] AHMED K B A, SENTHILNATHAN R, MEGARAJAN S, et al. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing[J]. Journal of Photochemistry and Photobiology B Biology, 2015, 151(1):39-45.
[34] LU Z, XIAO J, WANG Y, et al. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application[J]. Journal of Colloid and Interface Science, 2015, 452(1):8-14.
[35] DURÁN N, MARCATO P D, ALVES O L, et al. Mechanistic aspects of biosynthesis of silver nanoparticles by several fusarium oxysporum strains[J]. Journal of Nanobiotechnology, 2005, 3(8):1-7.
[36] ZHANG G, KEITA B, DOLBECQ A, et al. Green chemistry-type one-step synthesis of silver nanostructures based on MoV-MoVI mixed-valence polyoxometalates[J]. Chemistry of Materials, 2007, 19(24):5821-5823.
[37] LIU R J, YU X L, ZHANG G J, et al. Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2013, 1(38):11961-11969.
[38] WANG L, YANG W T, ZHU W, et al. A nanosized {Ag@Ag12} "molecular windmill" templated by polyoxometalates anions[J]. Inorganic Chemistry, 2014, 53(21):11584-11588.
[39] TROUPIS A, TRIANTIS T, HISKIA A, et al. Rate-redox-controlled size-selective synthesis of silver nanoparticles using polyoxometalates[J]. European Journal of Inorganic Chemistry, 2008, 2008(36):5579-5586.
[40] LIU B, SHEN S Q, LUO J W, et al. One-pot green synthesis and antimicrobial activity of exfoliated Ag NP-loaded quaternized chitosan/clay nanocomposites[J]. RSC Advances, 2013, 3(25):9714-9722.
[41] SONDI I, SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for gram-negative bacteria[J]. Journal of Colloid and Interface Science, 2004, 275(1):177-182.
[42] KUMAR R, M NSTEDT H. Silver ion release from antimicrobial polyamide/silver composites[J]. Biomaterials, 2005, 26(14):2081-2088.
[43] FENG Q, WU J, CHEN G, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research, 2000, 52(4):662-668.
[44] PANCEK A, KVITEK L, PRUCEK R, et al. Silver colloid nanoparticles:synthesis, characterization, and their antibacterial activity[J]. Journal of Physical Chemistry B, 2006, 110(33):16248-16253.
[45] MORONES J R, ELECHIGUERRA J L, CAMACHO A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005, 16(10):2346.
[46] IBRAHIM H M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms[J]. Journal of Radiation Research and Applied Sciences, 2015, 8(3):265-275.
[47] ZHONG H Q, YE W J, LI X Y, et al. Polyelectrolyte sponge reinforced with organic rectorite and silver nanoparticles[J]. Current Nanoscience, 2013, 9(6):742-746.
[48] ARGIROVA M, HADJⅡSKI O. Application of the nanocrystalline silver in treatment of burn wounds in children[M].[S.l.]:INTECH Open Access Publisher, 2011:237-265.
[49] KOKURA S, HANDA O, TAKAGI T, et al. Silver nanoparticles as a safe preservative for use in cosmetics[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2010, 6(4):570-574.
[50] LING Y Z, LUO Y Q, LUO J W, et al. Novel antibacterial paper based on quaternized carboxymethyl chitosan/organic montmorillonite/Ag NP nanocomposites[J]. Industrial Crops and Products, 2013, 51(1):470-479.
[51] KUMAR A, VEMULA P K, AJAYAN P M, et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil[J]. Nature Materials, 2008, 7(3):236-241.
[52] 程明明, 柴立元, 彭兵, 等. 抗菌陶瓷的研究现状及展望[J]. 材料导报, 2005, 19(9):47-49. CHENG M M, CHAI L Y, PENG B, et al. Current research status and prospect of antibacterial ceramics[J]. Materials Review, 2005, 19(9):47-49.
[53] YOON K Y, BYEON J H, PARK C W, et al. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers[J]. Environmental Science & Technology, 2008, 42(4):1251-1255.
[54] CLASEN T F, BROWN J, COLLIN S, et al. Reducing diarrhea through the use of household-based ceramic water filters:a randomized, controlled trial in rural Bolivia[J]. The American Journal of Tropical Medicine and Hygiene, 2004, 70(6):651-657.
[55] KANMANI P, RHIM J W. Physicochemical properties ofgelatin/silver nanoparticle antimicrobial composite films[J]. Food Chemistry, 2014, 148(1):162-169.
[56] EMAMIFAR A, KADIVAR M, SHAHEDI M, et al. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice[J]. Innovative Food Science & Emerging Technologies, 2010, 11(4):742-748.
[57] HU A W, FU Z H. Nanotechnology and its application in packaging and packaging machinery[J]. Packaging Engineering, 2003, 24(1):22-24.
[1] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[2] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[3] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[4] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[5] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[6] 税玥, 冯可芹, 岳慧芳, 张燕燕, 严子迪. Ni含量对钒钛磁铁矿原位合成制备铁基摩擦材料的影响[J]. 材料工程, 2018, 46(9): 73-79.
[7] 云亮, 刘峥, 李海莹, 王浩, 钟寒阳. 原位合成壳聚糖复合炭材料及其在铅碳电池中的应用[J]. 材料工程, 2018, 46(8): 57-63.
[8] 刘政军, 贾华, 李萌. 自保护药芯焊丝堆焊原位合成TiB2-TiC颗粒对堆焊合金组织性能的影响[J]. 材料工程, 2018, 46(7): 106-112.
[9] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[10] 于文霖, 吴一, 吴新泽, 莫培程, 虞琦峰. 烧结温度对cBN-Al-Ti体系原位合成PcBN的影响[J]. 材料工程, 2018, 46(11): 90-95.
[11] 黄连根, 郑玉婴. 树枝状介孔二氧化硅的制备及其负载纳米银的抗菌性[J]. 材料工程, 2018, 46(10): 135-141.
[12] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[13] 李尧, 卢怡, 曹文斌. W掺杂二氧化钒的水热晶化机理及其相变性能[J]. 材料工程, 2017, 45(11): 58-65.
[14] 郑辉东, 邱洪峰, 郑玉婴, 刘艺, 连汉青, 陈志杰. 负载纳米银EVA复合发泡材料的制备及其抗菌性能[J]. 材料工程, 2016, 44(7): 107-112.
[15] 龙伟民, 路全彬, 何鹏, 薛松柏, 吴铭方, 薛鹏. 钎焊过程原位合成Al-Si-Cu合金及接头性能[J]. 材料工程, 2016, 44(6): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn