Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 117-123    DOI: 10.11868/j.issn.1001-4381.2015.001189
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
升温速率对2219铝合金蠕变时效行为的影响
刘凌峰, 湛利华, 李文科
中南大学 轻合金研究院, 长沙 410083
Effect of Heating Rate on Creep Aging Behavior of 2219 Aluminum Alloy
LIU Ling-feng, ZHAN Li-hua, LI Wen-ke
Light Alloy Research Institute, Central South University, Changsha 410083, China
全文: PDF(4196 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 研究2219铝合金在蠕变时效成形过程中,升温速率对其蠕变行为及力学性能的影响规律。实验模拟构件在热压罐中的升温条件,降低材料的升温速率(0.75℃/min),延长其升温时间至4h(某典型构件真实蠕变时效升温时间),分别在0,150,210MPa 3种应力条件及不同的时效时间下进行蠕变实验,并对材料拉伸力学性能和微观组织(TEM)进行分析。结果表明:对比在材料尺度下0.5h的升温条件(5.5℃/min),升温速率的降低,在一定程度上提高了材料的力学性能,并且延长了材料强度达到峰值的时间;铝合金析出相的形状因子随着时效时间呈现先增长,到达峰值后下降的趋势;降低升温速率,材料在升温阶段即已发生了显著蠕变形变,在150MPa和210MPa应力条件下升温阶段的蠕变量分别占总蠕变量的29.28%和21.56%,且蠕变变形量和稳态蠕变速率会随着应力的升高而增加;由此,基于材料尺度(标准蠕变试样)的蠕变时效研究,用于表征构件尺度蠕变时效行为时,须进一步考虑升温速率对其成形及性能演变的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凌峰
湛利华
李文科
关键词 蠕变时效升温速率力学性能微观结构    
Abstract:Effect of heating rate on creep aging behavior and mechanical properties in the process of creep aging forming of 2219 aluminum alloy was studied. In order to simulate the temperature conditions of the component in autoclave, heating rate was reduced to 0.75℃/min and heating time was prolonged to 4h(real creep aging heating time for a typical component). Creep aging experiments were carried out under three kinds of stress conditions of 0,150,210MPa and different aging time, tensile mechanical properties and microstructures (TEM) of materials were analyzed. The results show that lowering heating rate improves mechanical properties of material and prolongs the arrival time of material strength peak compared to heating time of 0.5h(5.5℃/min) in material standard; shape factor of precipitate phase of aluminum alloy increases with the aging time, and then decreases after reaching the peak; when lowering heating rate, significant creep deformation occurs in materials heating stage, creep strain of heating stage are accounted for 29.28% and 21.56% of total creep strain in two kinds of stress conditions of 150MPa and 210MPa, creep strain and steady-state creep rate increase with the rise of stress; therefore, it is necessary to further consider the effect of heating rate on the forming and mechanical property evolution in the study on the characterization of creep aging behavior of component based on the creep aging research of material standard(standard creep specimen).
Key wordscreep aging    heating rate    mechanical property    microstructure
收稿日期: 2015-09-28      出版日期: 2018-03-20
中图分类号:  TG146.2  
基金资助: 
通讯作者: 湛利华(1976-),女,博士,教授,主要从事蠕变时效成形方面研究工作,联系地址:湖南省长沙市麓山南路932号中南大学新校区机电工程学院(410083),E-mail:yjs-cast@csu.edu.cn     E-mail: yjs-cast@csu.edu.cn
引用本文:   
刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
LIU Ling-feng, ZHAN Li-hua, LI Wen-ke. Effect of Heating Rate on Creep Aging Behavior of 2219 Aluminum Alloy. Journal of Materials Engineering, 2018, 46(3): 117-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001189      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/117
[1] SALLAH M, PEDDIESON J Jr, FOROUDASTAN S.A mathematical model of autoclave age forming[J]. Journal of Materials Processing Technology, 1991, 28(1/2):211-219.
[2] 舒德龙, 田素贵, 梁爽,等. 一种4.5%Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1):93-100. SHU D L, TIAN S G, LIANG S,et al. Deformation and damage mechanism of a 4.5% Re-containing nickel-based single crystal superalloy during creep at 980℃[J]. Journal of Materials Engineering,2017, 45(1):93-100.
[3] 王祝堂. 变形铝合金热处理工艺[M]. 长沙:中南大学出版社, 2011. WANG Z T. Heat treatment process of deformed aluminum alloy[M].Changsha:Central South University Press,2011.
[4] 曾元松,黄遐,黄硕. 蠕变时效成形技术研究现状与发展趋势[J].塑性工程学报,2008,15(3):1-8. ZENG Y S,HUANG X,HUANG S. The research situation and the developing tendency of creep age forming technology[J]. Journal of Plasticity Engineering,2008,15(3):1-8.
[5] 万李,杨浩亮,丁鹏飞,等.2219铝合金蠕变时效行为及组织分析[J]. 航天制造技术,2014(5):35-37. WAN L, YANG H L, DING P F, et al. The creep aging behavior and microstructure analysis of AA2219[J]. Aerospace Manufacturing Technology,2014(5):35-37.
[6] 关春龙, 何伟春, 赵志伟,等. 2024合金极低温度下蠕变特性[J]. 航空材料学报, 2014, 34(3):93-96. GUAN C L, HE W C, ZHAO Z W, et al. Creep characteristics of 2024 alloy at cryogenic temperatures[J]. Journal of Aeronautical Materials, 2014, 34(3):93-96.
[7] 赵建华,陈泽宇,李思宇,等. 初始状态对2124铝合金蠕变时效行为与力学性能的影响[J].材料工程,2012(10):63-67. ZHAO J H, CHEN Z Y, LI S Y,et al. Effect of initial states on creep aging behaviors and mechanical properties of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2012(10):63-67.
[8] 许晓龙. 蠕变时效统一本构建模与成形模面回弹补偿[D].长沙:中南大学, 2014. XU X L. Unified constitutive modelling on creep aging and springback modification of forming tool surface[D]. Changsha:Central South University, 2014.
[9] LIU G, ZHANG G J, DING X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc or rod/needle-shaped precipitates[J]. Materials Science and Engineering:A,2003,344(1/2):113-124.
[10] LIU G, SUN J, NAN C W, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J]. Acta Materialia,2005,53(12):3459-3468.
[11] 汪军. 钛合金的蠕变行为研究[D]. 哈尔滨:哈尔滨工业大学, 2008. WANG J. A study on creep behavior of titanium alloy[D]. Harbin:Harbin Institute of Technology, 2008.
[12] 尹旭妮,湛利华,赵俊.2219铝合金稳态蠕变本构方程的建立[J].中国有色金属学报, 2014,24(9):2250-2256. YIN X N, ZHAN L H, ZHAO J. Establishment of steady creep constitutive equation of 2219 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2014,24(9):2250-2256.
[13] 邓运来,周亮, 晋坤,等. 2124铝合金蠕变时效的微结构与性能[J]. 中国有色金属学报,2010,20(11):2106-2111. DENG Y L, ZHOU L, JIN K, et al. Microstructure and properties of creep aged 2124 aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2010,20(11):2106-2111.
[14] 李炎光, 湛利华, 谭斯格.工艺参数对2124合金蠕变时效成形的影响[J]. 特种铸造及有色合金, 2011, 31(6):580-582. LI Y G, ZHAN L H, TAN S G.Effects of processing parameters on creep aging forming in 2124 aluminum alloy[J].Special Casting & Nonferrous Alloys,2011, 31(6):580-582.
[15] 张俊善. 材料的高温变形与断裂[M].北京:科学出版社,2007:3-4. ZHANG J S. High temperature deformation and fracture of materials[M].Beijing:Science Press,2007:3-4.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[9] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[10] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn