Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 117-123    DOI: 10.11868/j.issn.1001-4381.2015.001189
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
升温速率对2219铝合金蠕变时效行为的影响
刘凌峰, 湛利华, 李文科
中南大学 轻合金研究院, 长沙 410083
Effect of Heating Rate on Creep Aging Behavior of 2219 Aluminum Alloy
LIU Ling-feng, ZHAN Li-hua, LI Wen-ke
Light Alloy Research Institute, Central South University, Changsha 410083, China
全文: PDF(4196 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 研究2219铝合金在蠕变时效成形过程中,升温速率对其蠕变行为及力学性能的影响规律。实验模拟构件在热压罐中的升温条件,降低材料的升温速率(0.75℃/min),延长其升温时间至4h(某典型构件真实蠕变时效升温时间),分别在0,150,210MPa 3种应力条件及不同的时效时间下进行蠕变实验,并对材料拉伸力学性能和微观组织(TEM)进行分析。结果表明:对比在材料尺度下0.5h的升温条件(5.5℃/min),升温速率的降低,在一定程度上提高了材料的力学性能,并且延长了材料强度达到峰值的时间;铝合金析出相的形状因子随着时效时间呈现先增长,到达峰值后下降的趋势;降低升温速率,材料在升温阶段即已发生了显著蠕变形变,在150MPa和210MPa应力条件下升温阶段的蠕变量分别占总蠕变量的29.28%和21.56%,且蠕变变形量和稳态蠕变速率会随着应力的升高而增加;由此,基于材料尺度(标准蠕变试样)的蠕变时效研究,用于表征构件尺度蠕变时效行为时,须进一步考虑升温速率对其成形及性能演变的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凌峰
湛利华
李文科
关键词 蠕变时效升温速率力学性能微观结构    
Abstract:Effect of heating rate on creep aging behavior and mechanical properties in the process of creep aging forming of 2219 aluminum alloy was studied. In order to simulate the temperature conditions of the component in autoclave, heating rate was reduced to 0.75℃/min and heating time was prolonged to 4h(real creep aging heating time for a typical component). Creep aging experiments were carried out under three kinds of stress conditions of 0,150,210MPa and different aging time, tensile mechanical properties and microstructures (TEM) of materials were analyzed. The results show that lowering heating rate improves mechanical properties of material and prolongs the arrival time of material strength peak compared to heating time of 0.5h(5.5℃/min) in material standard; shape factor of precipitate phase of aluminum alloy increases with the aging time, and then decreases after reaching the peak; when lowering heating rate, significant creep deformation occurs in materials heating stage, creep strain of heating stage are accounted for 29.28% and 21.56% of total creep strain in two kinds of stress conditions of 150MPa and 210MPa, creep strain and steady-state creep rate increase with the rise of stress; therefore, it is necessary to further consider the effect of heating rate on the forming and mechanical property evolution in the study on the characterization of creep aging behavior of component based on the creep aging research of material standard(standard creep specimen).
Key wordscreep aging    heating rate    mechanical property    microstructure
收稿日期: 2015-09-28      出版日期: 2018-03-20
中图分类号:  TG146.2  
基金资助: 
通讯作者: 湛利华(1976-),女,博士,教授,主要从事蠕变时效成形方面研究工作,联系地址:湖南省长沙市麓山南路932号中南大学新校区机电工程学院(410083),E-mail:yjs-cast@csu.edu.cn     E-mail: yjs-cast@csu.edu.cn
引用本文:   
刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
LIU Ling-feng, ZHAN Li-hua, LI Wen-ke. Effect of Heating Rate on Creep Aging Behavior of 2219 Aluminum Alloy. Journal of Materials Engineering, 2018, 46(3): 117-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001189      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/117
[1] SALLAH M, PEDDIESON J Jr, FOROUDASTAN S.A mathematical model of autoclave age forming[J]. Journal of Materials Processing Technology, 1991, 28(1/2):211-219.
[2] 舒德龙, 田素贵, 梁爽,等. 一种4.5%Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1):93-100. SHU D L, TIAN S G, LIANG S,et al. Deformation and damage mechanism of a 4.5% Re-containing nickel-based single crystal superalloy during creep at 980℃[J]. Journal of Materials Engineering,2017, 45(1):93-100.
[3] 王祝堂. 变形铝合金热处理工艺[M]. 长沙:中南大学出版社, 2011. WANG Z T. Heat treatment process of deformed aluminum alloy[M].Changsha:Central South University Press,2011.
[4] 曾元松,黄遐,黄硕. 蠕变时效成形技术研究现状与发展趋势[J].塑性工程学报,2008,15(3):1-8. ZENG Y S,HUANG X,HUANG S. The research situation and the developing tendency of creep age forming technology[J]. Journal of Plasticity Engineering,2008,15(3):1-8.
[5] 万李,杨浩亮,丁鹏飞,等.2219铝合金蠕变时效行为及组织分析[J]. 航天制造技术,2014(5):35-37. WAN L, YANG H L, DING P F, et al. The creep aging behavior and microstructure analysis of AA2219[J]. Aerospace Manufacturing Technology,2014(5):35-37.
[6] 关春龙, 何伟春, 赵志伟,等. 2024合金极低温度下蠕变特性[J]. 航空材料学报, 2014, 34(3):93-96. GUAN C L, HE W C, ZHAO Z W, et al. Creep characteristics of 2024 alloy at cryogenic temperatures[J]. Journal of Aeronautical Materials, 2014, 34(3):93-96.
[7] 赵建华,陈泽宇,李思宇,等. 初始状态对2124铝合金蠕变时效行为与力学性能的影响[J].材料工程,2012(10):63-67. ZHAO J H, CHEN Z Y, LI S Y,et al. Effect of initial states on creep aging behaviors and mechanical properties of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2012(10):63-67.
[8] 许晓龙. 蠕变时效统一本构建模与成形模面回弹补偿[D].长沙:中南大学, 2014. XU X L. Unified constitutive modelling on creep aging and springback modification of forming tool surface[D]. Changsha:Central South University, 2014.
[9] LIU G, ZHANG G J, DING X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc or rod/needle-shaped precipitates[J]. Materials Science and Engineering:A,2003,344(1/2):113-124.
[10] LIU G, SUN J, NAN C W, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J]. Acta Materialia,2005,53(12):3459-3468.
[11] 汪军. 钛合金的蠕变行为研究[D]. 哈尔滨:哈尔滨工业大学, 2008. WANG J. A study on creep behavior of titanium alloy[D]. Harbin:Harbin Institute of Technology, 2008.
[12] 尹旭妮,湛利华,赵俊.2219铝合金稳态蠕变本构方程的建立[J].中国有色金属学报, 2014,24(9):2250-2256. YIN X N, ZHAN L H, ZHAO J. Establishment of steady creep constitutive equation of 2219 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2014,24(9):2250-2256.
[13] 邓运来,周亮, 晋坤,等. 2124铝合金蠕变时效的微结构与性能[J]. 中国有色金属学报,2010,20(11):2106-2111. DENG Y L, ZHOU L, JIN K, et al. Microstructure and properties of creep aged 2124 aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2010,20(11):2106-2111.
[14] 李炎光, 湛利华, 谭斯格.工艺参数对2124合金蠕变时效成形的影响[J]. 特种铸造及有色合金, 2011, 31(6):580-582. LI Y G, ZHAN L H, TAN S G.Effects of processing parameters on creep aging forming in 2124 aluminum alloy[J].Special Casting & Nonferrous Alloys,2011, 31(6):580-582.
[15] 张俊善. 材料的高温变形与断裂[M].北京:科学出版社,2007:3-4. ZHANG J S. High temperature deformation and fracture of materials[M].Beijing:Science Press,2007:3-4.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn