Please wait a minute...
材料工程  2017, Vol. 45 Issue (7): 48-53    DOI: 10.11868/j.issn.1001-4381.2015.001231
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟
北京航空制造工程研究所 高能束流加工技术重点实验室, 北京 100024
First Principle Study of Mechanical Properties of Yttrium Silicates
JIN Lei, CUI Xiang-zhong, WANG Chun, ZHOU Guo-dong, JIANG Chun-zhu, LI Qi-lian, YANG Jing
Science and Technology on Power Beam Process Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
全文: PDF(1452 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为深入研究Cf/SiC复合材料钇硅酸盐涂层材料Y2SiO5与Y2Si2O7的力学性能,为钇硅酸盐涂层体系的设计提供理论依据,基于第一性原理广义梯度近似,研究钇硅酸盐理想晶体X1-Y2SiO5γ-Y2Si2O7的电子结构、力学性能。结果表明:X1-Y2SiO5γ-Y2Si2O7均为机械稳定结构,X1-Y2SiO5γ-Y2Si2O7的体模量、剪切模量、弹性模量、泊松比分别为112,49,128GPa,0.31和114,55,142GPa,0.29。可见X1-Y2SiO5的模量较γ-Y2Si2O7低。同时研究二者理想晶体的韧性、热膨胀系数、残余应力。结果表明:X1-Y2SiO5韧性较γ-Y2Si2O7好,热膨胀系数较γ-Y2Si2O7高,残余应力较γ-Y2Si2O7低。
E-mail Alert
关键词 Y2SiO5Y2Si2O7第一性原理力学性能    
Abstract:In order to investigate mechanical properties of Y2SiO5 and Y2Si2O7 yttrium silicates coatings on Cf/SiC composites and design thermal environment barrier coatings, first-principles calculations were performed to investigate electronic and mechanical properties of X1-Y2SiO5 and γ-Y2Si2O7 using gradient generalized approximation (GGA) based on first principles. The results indicate that they are both mechanically stable structures. Bulk, shear modulus, Young's modulus of X1-Y2SiO5 and γ-Y2Si2O7 are 112GPa, 49GPa, 128GPa, 0.31 and 114GPa, 55GPa, 142GPa, 0.29, respectively. These mechanical properties of X1-Y2SiO5 are lower than those of γ-Y2Si2O7. At the same time, toughness, thermal expansion coefficient and residual stress of two ideal crystals were studied. The results show that X1-Y2SiO5 has better ductile properties than γ-Y2Si2O7 and its thermal expansion coefficient is larger than that of γ-Y2Si2O7 and while, the residual stress of Y2SiO5 is lower.
Key wordsY2SiO5    Y2Si2O7    first principle    mechanical property
收稿日期: 2015-10-15      出版日期: 2017-07-21
中图分类号:  TG174.4  
通讯作者: 靳磊(1983-),男,高级工程师,博士,主要从事热喷涂涂层制备及第一原理研究,联系地址:北京航空制造工程研究所104研究室(100024),     E-mail:
靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟. 钇硅酸盐材料力学性能的第一性原理研究[J]. 材料工程, 2017, 45(7): 48-53.
JIN Lei, CUI Xiang-zhong, WANG Chun, ZHOU Guo-dong, JIANG Chun-zhu, LI Qi-lian, YANG Jing. First Principle Study of Mechanical Properties of Yttrium Silicates. Journal of Materials Engineering, 2017, 45(7): 48-53.
链接本文:      或
[1] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation behavior from room temperature to 1500℃ of 3D-C/SiC composites with different coatings [J]. Journal of the American Ceramic Society, 2002, 85(4): 989-991.
[2] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation behavior of C-SiC composites with a Si-W coating from room temperature to 1500℃ [J]. Carbon, 2000, 38(15): 2133-2138.
[3] ZHANG Y L, LI H J, FU Q G, et al. A Si-Mo oxidation protective coating for C/SiC coated carbon/carbon composites [J]. Carbon, 2007, 45(5): 1130-1133.
[4] YAN Z Q, XIONG X, XIAO P, et al. Si-Mo-SiO2 oxidation protective coatings prepared by slurry painting for C/C-SiC composites[J]. Surface and Coatings Technology, 2008, 202(19): 4734-4740.
[5] APARICIO M, DURAN A. Preparation and characterization of 50SiO2-50Y2O3 sol-gel coatings on glass and SiC(C/SiC) composites [J]. Ceramics International, 2005, 31(4): 631-634.
[6] APARICIO M, DURAN A. Yttrium silicate coatings for oxidation protection of carbon-silicon carbide composites [J]. Journal of the American Ceramic Society, 2000, 83(6): 1351-1355.
[7] HUANG J F, LI H J, ZENG X R, et al. A new SiC/yttrium silicate/glass multi-layer oxidation protective coating for carbon/carbon composites[J]. Carbon, 2004, 42(11): 2356-2359.
[8] HUANG J F, LI H J, ZENG X R, et al. Oxidation resistant yttrium silicates coating for carbon/carbon composites prepared by a novel in-situ formation method[J]. Ceramics International, 2007, 33(5): 887-890.
[9] WAGNER S, SEIFERT H J, ALDINGER F, et al. High-temperature reaction of C/C-SiC composites with ceramic coatings[J]. Materials & Manufacturing Processes, 2002, 17(5): 619-635.
[10] WEBSTER J D, WESTWOOD M E, HAYES F H, et al. Oxidation protection coatings for C/SiC based on yttrium silicate [J]. Journal of the European Ceramic Society, 1998, 18(16): 2345-2350.
[11] HUANG J, LI H, ZENG X, et al. A new SiC/yttrium silicate/glass multi-layer oxidation protective coating for carbon/carbon composites[J]. Carbon, 2004, 42: 2329-2366.
[12] SOKOLNICKI J. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED [J]. Journal of Luminescence, 2013, 134: 600-606.
[13] BISWAS K, ALDINGER F. High temperature compliance test: a new methodology to characterize visco-elastic, anelastic and plastic behavior [J]. Materials Chemistry and Physics, 2008, 112(2): 366-372.
[14] SUN Z Q, LI M S, ZHOU Y C. Thermal properties of single-phase Y2SiO5 [J]. Journal of the European Ceramic Society, 2009, 29(4): 551-557.
[15] WANG J G, TIAN S J, LI G B, et al. Preparation and X-ray characterization of low temperature phases of R2SiO5 (R5 rare earth elements) [J]. Materials Research Bulletin 2001, 36(10): 1855-1861.
[16] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2743.
[17] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349-354.
[18] PARASHARI S, KUMAR S, AULUEK S. Pressure induced, electrode and optical properties of zineblende InP [J]. Solid State Electron, 2008, 52(5): 749-755.
[19] BATALIEVA N G, PYATENKO Y A. Artificial yttrialite (gamma-phase)-a representative of a new structure type in the rare earth diorthosilicate series [J]. Crystallography, 1971, 16, 905-910.
[20] WANG J Y, ZHOU Y C, LIN Z J. Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations [J]. Acta Materialia, 2007, 55(17): 6019-6026.
[21] PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine, 1954, 45(367): 823-827.
[22] GILMAN J. Electronic Basis of the Strength of Materials [M]. England: Cambridge University Press, 2003:86-89.
[23] BECERRO A I, ESCUDERO A, FLORIAN P. Revisiting Y2Si2O7 and Y2SiO5 polymorphic structures by 89Y MAS-lorianNMR spectroscopy[J]. Journal of Solid State Chemistry, 2004, 177(8): 2783-2789.
[24] SANCHEZ-PORTAL D, ARTACHO E, SOLER J M. Projection of plane-wave calculations into atomic orbital[J]. Solid State Communications, 1995, 95(10): 685-690.
[25] GAO F, HE J L, WU E D, et al. Hardness of covalent crystals [J]. Physical Review Letters, 2003, 91(1): 1-4.
[26] ARENZ R J. Relation of elastic modulus to thermal expansion coefficient in elastic and viscoelastic materials [C]//Portland: SEM Annual Conference & Exposition on Experimental and Applied Mechanics, 2005:58-63.
[27] BARKER R E. An approximate relation between elastic moduli and thermal expansivities [J]. Journal of Applied Physics, 1963, 34(1): 107-116.
[28] FUKUDA K, MATSUBARA H. Thermal expansion of δ-yttrium disilicate [J]. Journal of the American Ceramic Society, 2004, 87(1): 89-92.
[29] WEBSTER J D, WESTWOOD M E, HAYERS F H, et al. Oxidation protection coatings for C-SiC based on yttrium silicate [J]. Journal of the European Ceramic Society, 1998, 18(16): 2345-2350.
[30] FUKUDA K, MATSUBARA H. Anisotropic thermal expansion in yttrium silicate[J]. Journal of Materials Research, 2003, 18(7): 1715-1722.
[31] 周益春, 刘奇星, 杨丽, 等. 热障涂层的破坏机理与寿命预测 [J]. 固体力学学报, 2010, 31(5): 504-531. ZHOU Y C, LIU Q X, YANG L, et al. Failure mechanisium and life prediction of thermal barrier coatings [J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 504-531.
[32] IBÉGAZÉNE H, ALPÉPINE S, DIOT C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: the influence of hafnia addition on TBC structure and high-temperature behaviour [J]. Journal of Materials Science, 1995, 30(4): 938-951.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持