Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (7): 48-53    DOI: 10.11868/j.issn.1001-4381.2015.001231
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钇硅酸盐材料力学性能的第一性原理研究
靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟
北京航空制造工程研究所 高能束流加工技术重点实验室, 北京 100024
First Principle Study of Mechanical Properties of Yttrium Silicates
JIN Lei, CUI Xiang-zhong, WANG Chun, ZHOU Guo-dong, JIANG Chun-zhu, LI Qi-lian, YANG Jing
Science and Technology on Power Beam Process Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
全文: PDF(1452 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为深入研究Cf/SiC复合材料钇硅酸盐涂层材料Y2SiO5与Y2Si2O7的力学性能,为钇硅酸盐涂层体系的设计提供理论依据,基于第一性原理广义梯度近似,研究钇硅酸盐理想晶体X1-Y2SiO5γ-Y2Si2O7的电子结构、力学性能。结果表明:X1-Y2SiO5γ-Y2Si2O7均为机械稳定结构,X1-Y2SiO5γ-Y2Si2O7的体模量、剪切模量、弹性模量、泊松比分别为112,49,128GPa,0.31和114,55,142GPa,0.29。可见X1-Y2SiO5的模量较γ-Y2Si2O7低。同时研究二者理想晶体的韧性、热膨胀系数、残余应力。结果表明:X1-Y2SiO5韧性较γ-Y2Si2O7好,热膨胀系数较γ-Y2Si2O7高,残余应力较γ-Y2Si2O7低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳磊
崔向中
王纯
周国栋
姜春竹
李其连
杨璟
关键词 Y2SiO5Y2Si2O7第一性原理力学性能    
Abstract:In order to investigate mechanical properties of Y2SiO5 and Y2Si2O7 yttrium silicates coatings on Cf/SiC composites and design thermal environment barrier coatings, first-principles calculations were performed to investigate electronic and mechanical properties of X1-Y2SiO5 and γ-Y2Si2O7 using gradient generalized approximation (GGA) based on first principles. The results indicate that they are both mechanically stable structures. Bulk, shear modulus, Young's modulus of X1-Y2SiO5 and γ-Y2Si2O7 are 112GPa, 49GPa, 128GPa, 0.31 and 114GPa, 55GPa, 142GPa, 0.29, respectively. These mechanical properties of X1-Y2SiO5 are lower than those of γ-Y2Si2O7. At the same time, toughness, thermal expansion coefficient and residual stress of two ideal crystals were studied. The results show that X1-Y2SiO5 has better ductile properties than γ-Y2Si2O7 and its thermal expansion coefficient is larger than that of γ-Y2Si2O7 and while, the residual stress of Y2SiO5 is lower.
Key wordsY2SiO5    Y2Si2O7    first principle    mechanical property
收稿日期: 2015-10-15      出版日期: 2017-07-21
中图分类号:  TG174.4  
通讯作者: 靳磊(1983-),男,高级工程师,博士,主要从事热喷涂涂层制备及第一原理研究,联系地址:北京航空制造工程研究所104研究室(100024),E-mail:yugongyishanjin@126.com     E-mail: yugongyishanjin@126.com
引用本文:   
靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟. 钇硅酸盐材料力学性能的第一性原理研究[J]. 材料工程, 2017, 45(7): 48-53.
JIN Lei, CUI Xiang-zhong, WANG Chun, ZHOU Guo-dong, JIANG Chun-zhu, LI Qi-lian, YANG Jing. First Principle Study of Mechanical Properties of Yttrium Silicates. Journal of Materials Engineering, 2017, 45(7): 48-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001231      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/48
[1] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation behavior from room temperature to 1500℃ of 3D-C/SiC composites with different coatings [J]. Journal of the American Ceramic Society, 2002, 85(4): 989-991.
[2] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation behavior of C-SiC composites with a Si-W coating from room temperature to 1500℃ [J]. Carbon, 2000, 38(15): 2133-2138.
[3] ZHANG Y L, LI H J, FU Q G, et al. A Si-Mo oxidation protective coating for C/SiC coated carbon/carbon composites [J]. Carbon, 2007, 45(5): 1130-1133.
[4] YAN Z Q, XIONG X, XIAO P, et al. Si-Mo-SiO2 oxidation protective coatings prepared by slurry painting for C/C-SiC composites[J]. Surface and Coatings Technology, 2008, 202(19): 4734-4740.
[5] APARICIO M, DURAN A. Preparation and characterization of 50SiO2-50Y2O3 sol-gel coatings on glass and SiC(C/SiC) composites [J]. Ceramics International, 2005, 31(4): 631-634.
[6] APARICIO M, DURAN A. Yttrium silicate coatings for oxidation protection of carbon-silicon carbide composites [J]. Journal of the American Ceramic Society, 2000, 83(6): 1351-1355.
[7] HUANG J F, LI H J, ZENG X R, et al. A new SiC/yttrium silicate/glass multi-layer oxidation protective coating for carbon/carbon composites[J]. Carbon, 2004, 42(11): 2356-2359.
[8] HUANG J F, LI H J, ZENG X R, et al. Oxidation resistant yttrium silicates coating for carbon/carbon composites prepared by a novel in-situ formation method[J]. Ceramics International, 2007, 33(5): 887-890.
[9] WAGNER S, SEIFERT H J, ALDINGER F, et al. High-temperature reaction of C/C-SiC composites with ceramic coatings[J]. Materials & Manufacturing Processes, 2002, 17(5): 619-635.
[10] WEBSTER J D, WESTWOOD M E, HAYES F H, et al. Oxidation protection coatings for C/SiC based on yttrium silicate [J]. Journal of the European Ceramic Society, 1998, 18(16): 2345-2350.
[11] HUANG J, LI H, ZENG X, et al. A new SiC/yttrium silicate/glass multi-layer oxidation protective coating for carbon/carbon composites[J]. Carbon, 2004, 42: 2329-2366.
[12] SOKOLNICKI J. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED [J]. Journal of Luminescence, 2013, 134: 600-606.
[13] BISWAS K, ALDINGER F. High temperature compliance test: a new methodology to characterize visco-elastic, anelastic and plastic behavior [J]. Materials Chemistry and Physics, 2008, 112(2): 366-372.
[14] SUN Z Q, LI M S, ZHOU Y C. Thermal properties of single-phase Y2SiO5 [J]. Journal of the European Ceramic Society, 2009, 29(4): 551-557.
[15] WANG J G, TIAN S J, LI G B, et al. Preparation and X-ray characterization of low temperature phases of R2SiO5 (R5 rare earth elements) [J]. Materials Research Bulletin 2001, 36(10): 1855-1861.
[16] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2743.
[17] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349-354.
[18] PARASHARI S, KUMAR S, AULUEK S. Pressure induced, electrode and optical properties of zineblende InP [J]. Solid State Electron, 2008, 52(5): 749-755.
[19] BATALIEVA N G, PYATENKO Y A. Artificial yttrialite (gamma-phase)-a representative of a new structure type in the rare earth diorthosilicate series [J]. Crystallography, 1971, 16, 905-910.
[20] WANG J Y, ZHOU Y C, LIN Z J. Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations [J]. Acta Materialia, 2007, 55(17): 6019-6026.
[21] PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine, 1954, 45(367): 823-827.
[22] GILMAN J. Electronic Basis of the Strength of Materials [M]. England: Cambridge University Press, 2003:86-89.
[23] BECERRO A I, ESCUDERO A, FLORIAN P. Revisiting Y2Si2O7 and Y2SiO5 polymorphic structures by 89Y MAS-lorianNMR spectroscopy[J]. Journal of Solid State Chemistry, 2004, 177(8): 2783-2789.
[24] SANCHEZ-PORTAL D, ARTACHO E, SOLER J M. Projection of plane-wave calculations into atomic orbital[J]. Solid State Communications, 1995, 95(10): 685-690.
[25] GAO F, HE J L, WU E D, et al. Hardness of covalent crystals [J]. Physical Review Letters, 2003, 91(1): 1-4.
[26] ARENZ R J. Relation of elastic modulus to thermal expansion coefficient in elastic and viscoelastic materials [C]//Portland: SEM Annual Conference & Exposition on Experimental and Applied Mechanics, 2005:58-63.
[27] BARKER R E. An approximate relation between elastic moduli and thermal expansivities [J]. Journal of Applied Physics, 1963, 34(1): 107-116.
[28] FUKUDA K, MATSUBARA H. Thermal expansion of δ-yttrium disilicate [J]. Journal of the American Ceramic Society, 2004, 87(1): 89-92.
[29] WEBSTER J D, WESTWOOD M E, HAYERS F H, et al. Oxidation protection coatings for C-SiC based on yttrium silicate [J]. Journal of the European Ceramic Society, 1998, 18(16): 2345-2350.
[30] FUKUDA K, MATSUBARA H. Anisotropic thermal expansion in yttrium silicate[J]. Journal of Materials Research, 2003, 18(7): 1715-1722.
[31] 周益春, 刘奇星, 杨丽, 等. 热障涂层的破坏机理与寿命预测 [J]. 固体力学学报, 2010, 31(5): 504-531. ZHOU Y C, LIU Q X, YANG L, et al. Failure mechanisium and life prediction of thermal barrier coatings [J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 504-531.
[32] IBÉGAZÉNE H, ALPÉPINE S, DIOT C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: the influence of hafnia addition on TBC structure and high-temperature behaviour [J]. Journal of Materials Science, 1995, 30(4): 938-951.
[1] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[2] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[3] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[4] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[5] 刘占勇, 左孝青, 钟子龙, 李威威. 半固态触变挤压对ZA27合金组织和力学性能的影响[J]. 材料工程, 2017, 45(6): 17-23.
[6] 潘晖, 赵海生. 镍基钎料钎焊K465高温合金大间隙接头组织与性能研究[J]. 材料工程, 2017, 45(5): 86-93.
[7] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[8] 黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
[9] 吉传波, 王晓峰, 邹金文, 杨杰. 石墨烯增强镍基粉末高温合金复合材料的力学性能[J]. 材料工程, 2017, 45(3): 1-6.
[10] 余伟, 王班, 贺婕, 徐士新, 雷力齐. 多层金属复合板的热轧制备方法[J]. 材料工程, 2017, 45(2): 32-38.
[11] 何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
[12] 杜博睿, 张学军, 郭绍庆, 李能, 孙兵兵, 唐思熠. 激光快速成形GH4169合金显微组织与力学性能[J]. 材料工程, 2017, 45(1): 27-32.
[13] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[14] 王宇, 曹零勇, 李俊鹏, 张华, 郭富安. 中间退火对汽车用5182铝合金板组织和性能的影响[J]. 材料工程, 2016, 44(9): 76-81.
[15] 徐学宏, 王小群, 闫超, 王旭. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn