Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 7-12    DOI: 10.11868/j.issn.1001-4381.2015.001240
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响
张林, 陈多礼, 朱旻昊, 蔡振兵, 彭金方
西南交通大学 材料先进技术教育部重点实验室摩擦学研究所, 成都 610031
Effect of Graphene Oxide on Anti-aging Property of Nitrile Butadiene Rubber
ZHANG Lin, CHEN Duo-li, ZHU Min-hao, CAI Zhen-bing, PENG Jin-fang
Tribology Research Institute, Key Laboratory of Advanced Materials Technologies(Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(7686 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以丁腈橡胶(NBR)为基体,添加由改进Hammer法制备的氧化石墨烯(GO)和经过表面改性过的氧化石墨烯(MGO),制备出有着较高阻尼性能的阻尼材料,借助DMA,AFM,SEM等手段,研究NBR/GO与NBR/MGO共混物的阻尼与抗老化性能,研究结果表明,加入GO与MGO于NBR中后,损耗角正切值(tanδ)增大,且其抗老化性能也有所改善,添加较少量GO于基体中时,其抗老化性能较好,添加MGO于基体中时,添加量与共混物的抗老化性能关系不明显,说明GO和MGO的分散性对其抗老化性能有正相关性。通过微观分析发现,团聚是共混物抗老化性能下降的主要原因,而添加GO和MGO后所形成的界面效应则是其阻尼性能和抗老化性能优良的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张林
陈多礼
朱旻昊
蔡振兵
彭金方
关键词 丁腈橡胶阻尼材料氧化石墨烯阻尼性能抗老化性能微观形貌    
Abstract:The blends with higher damping performance was prepared based on nitrile butadiene rubber(NBR) with addition of graphene oxide(GO) and modified graphene oxide(MGO) prepared by improved Hammer method. Meanwhile, the damping property and the anti-aging property of the blends were investigated by DMA, AFM, SEM and so forth. The results show that after the addition of the GO and MGO, the tangent of loss angle(tanδ) increases and also the anti-aging property is improved. When adding less amount of GO in the matrix, the anti-aging property is better; when adding MGO in the matrix, the amount of addition is not obviously related with the anti-aging property of the blends. The dispersion of GO and MGO has positive correlation with its anti-aging property. By microscopic analysis, the main reason for the decrease of anti-aging property of the blends is the agglomeration of the GO. The interface effect formed by the addition of MGO and GO is the main reason for its high damping property and anti-aging property.
Key wordsnitrile butadiene rubber    damping material    graphene oxide    damping property    anti-aging property    microstructure
收稿日期: 2015-10-15      出版日期: 2017-03-22
中图分类号:  TQ330.7+5  
通讯作者: 朱旻昊(1968-),男,教授,博士,研究方向:材料改性与服役,联系地址:西南交通大学材料先进技术教育部重点实验室摩擦学研究所(610031),E-mail:zhuminhao@139.com     E-mail: zhuminhao@139.com
引用本文:   
张林, 陈多礼, 朱旻昊, 蔡振兵, 彭金方. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3): 7-12.
ZHANG Lin, CHEN Duo-li, ZHU Min-hao, CAI Zhen-bing, PENG Jin-fang. Effect of Graphene Oxide on Anti-aging Property of Nitrile Butadiene Rubber. Journal of Materials Engineering, 2017, 45(3): 7-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001240      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/7
[1] SHAMIR D, SIEGMANN A, NARKIS M. Vibration damping and electrical conductivity of styrene-butyl acrylate random copolymers filled with carbon black[J]. Journal of Applied Polymer Science, 2010, 115(4):1922-2928.
[2] 倪楠楠, 温月芳, 贺德龙, 等. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6):90-101. NI N N, WEN Y F, HE D L, et al. Process on the research of structure-damping composites[J]. Journal of Materials Engineering, 2015, 43(6):90-101.
[3] 涂春潮, 王珊, 任玉柱, 等. 阻尼硅橡胶/丁苯橡胶共混胶动态性能[J]. 航空材料学报, 2014, 34(2):58-62. TU C C, WANG S, REN Y Z, et al. Dynamic mechanical properties of damping silicon rubber/styrene-butadiene rubber blend[J]. Journal of Aeronautical Materials, 2014, 34(2):58-62.
[4] KANEKO H, INOUE K, TOMINAGA Y, et al. Damping performance of polymer blend/organic filler hybrid materials with selective compatibility[J]. Mater Lett, 2002,52(1-2):96-99.
[5] LEE R K, LIANG J Z, TONG S C. Morphology and dynamic mechanical properties of glass beads filled low density polyethylene composites[J]. Mater Proc Technol, 1998,79(1-3):59-65.
[6] HAJIME K, ANABU M, SATOSHI M, et al. Damping properties of thermoplastic-elastomer interleaved carbon fiber reinforced epoxy composites[J]. Compos Sci Technol, 2004,64:2517-2523.
[7] 曾宪峰. 高分子材料老化与防老化[M].北京:化学工业出版社,1979. ZENG X F. Aging and Anti-aging of Polymer Materials[M].Beijing:Chemical Industry Press,1979.
[8] WANG Y M, LIU L, LUO Y F, et al. Aging behavior and thermal degradation of fluoric elastomeric reactive blends with poly-phenol hydroxyl EPDM[J]. Polymer Degradation and Stability,2009,94:443-449.
[9] SIRIRAT J B, CHUSAKSR, PITT S, et al. Effects of thermal aging on properties and pyrolysis products of tire tread compound[J]. Journal of Analytical and Applied Pyrolysis,2007, 80(1):269-276
[10] WU C. Microstructural development of a vitrified hindered phenol compound during thermal annealing[J]. Polymer,2003, 44(5):1697-1703.
[11] ZHANG C, WANG P, MA C A, et al. Damping properties of chlorinated polyethylene-based hybrids:effect of organic additives[J]. J Appl Polym Sci, 2006,100(4):3307-3311.
[12] MEYER J C, GEIM A K, KATSNELON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131):60-63
[13] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669
[14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005,438(7065):197-200.
[15] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in graphene[J]. Nat Mater,2007,6(11):858-861
[16] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nat Phys, 2010,5:722-726.
[17] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010,39:228-240
[18] LOH K P, BAO Q, EDA G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nat Chem, 2010,12(2):1015-1024
[1] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[2] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[3] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[4] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[5] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[6] 张浩, 李海丽. 复合乳化剂作用下相变调湿复合材料的性能和机理[J]. 材料工程, 2019, 47(12): 157-162.
[7] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
[8] 李建, 杜明, 黄志雄. PMN/CB/PF/ⅡR复合材料制备及其阻尼性能[J]. 材料工程, 2018, 46(6): 125-131.
[9] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[10] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
[11] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[12] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[13] 李闯, 李伟, 王明宇, 王柏臣, 冯博文, 李勃翰, 李强. 功能化氧化石墨烯改性双马树脂及其复合材料[J]. 材料工程, 2018, 46(12): 48-53.
[14] 赵雄伟, 臧充光, 焦清介, 马庆坤. Cu-CF/EP复合材料导电与阻尼性能研究[J]. 材料工程, 2017, 45(9): 45-51.
[15] 郑玉婴, 曹宁宁. 氧化石墨烯纳米带杂化粒子和石墨烯纳米带的研究进展[J]. 材料工程, 2017, 45(6): 118-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn