Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (11): 49-57    DOI: 10.11868/j.issn.1001-4381.2015.001257
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能
董鹏1,2, 张英杰1,2, 刘嘉铭1,2, 李雪1,2
1. 昆明理工大学 冶金与能源工程学院, 昆明 650093;
2. 云南省先进电池及材料工程实验室, 昆明 650093
Fabrication and Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Coated with Nano FePO4 as Cathode Material for Lithium-ion Batteries
DONG Peng1,2, ZHANG Ying-jie1,2, LIU Jia-ming1,2, LI Xue1,2
1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Yunnan Province Engineering Laboratory for Advanced Batteries and Materials, Kunming 650093, China
全文: PDF(6899 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为改善LiNi0.5Co0.2Mn0.3O2正极材料的电化学性能,采用自制的磷酸铁纳米悬浮液,通过共沉淀法在LiNi0.5Co0.2Mn0.3O2正极材料表面包覆纳米磷酸铁。应用XRD,TG-DTA,TEM等手段表征制备的磷酸铁的结构,形貌和液相状态;通过XRD,SEM,EDS,TEM,ICP,恒流充放电、循环伏安、交流阻抗表征制备的包覆材料的结构、形貌及电化学性能。研究烧结温度和包覆量对LiNi0.5Co0.2Mn0.3O2正极材料电化学性能的影响。结果表明,热处理温度为400℃,2%(质量分数,下同)磷酸铁包覆能显著地改善LiNi0.5Co0.2Mn0.3O2正极材料的循环性能和倍率性能。循环伏安和交流阻抗结果显示,包覆磷酸铁后改善了LiNi0.5Co0.2Mn0.3O2正极材料的可逆性和动力学性能。ICP测试结果表明,磷酸铁包覆层能够有效地降低电解液对正极材料的溶解与侵蚀,稳定其层状结构,从而提高正极材料的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董鹏
张英杰
刘嘉铭
李雪
关键词 磷酸铁正极材料LiNi0.5Co0.2Mn0.3O2包覆    
Abstract:Layered LiNi0.5Co0.2Mn0.3O2 coated with homogeneous nano FePO4 suspension was prepared by using co-precipitation method. XRD, TG-DTA and TEM were adopted to characterize the structure, morphology and liquid state of FePO4 prepared. The structure, morphology and electrochemical performance of the coated materials prepared were characterized by the means such as XRD, SEM, EDS, TEM, ICP, galvanostatic charge-discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy(EIS) tests. The effect of heat treatment temperature and coating quantity on the structure and electrochemical performance of coated LiNi0.5Co0.2Mn0.3O2 by co-precipitation method was explored. The results show that 400℃ and 2%(mass fraction,the same below) FePO4 coating can significantly improve cycle performance and rate capability of LiNi0.5Co0.2Mn0.3O2, CV and EIS testing results reveal that FePO4 coating can improve the reversibility and dynamic performance for LiNi0.5Co0.2Mn0.3O2. ICP results show that FePO4 coating layer can effectively reduce the electrolyte to dissolute and erode cathode materials, stabilize its layered structure, then improve the electrochemical performance of cathode materials.
Key wordsFePO4    cathode material    LiNi0.5Co0.2Mn0.3O2    coating modification
收稿日期: 2015-10-20      出版日期: 2017-11-18
中图分类号:  O64  
通讯作者: 董鹏(1980-),男,副教授,博士,主要研究方向为锂离子电池材料,联系地址:昆明理工大学(莲华)冶金与能源工程学院(650093),E-mail:dongpeng2001@126.com     E-mail: dongpeng2001@126.com
引用本文:   
董鹏, 张英杰, 刘嘉铭, 李雪. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11): 49-57.
DONG Peng, ZHANG Ying-jie, LIU Jia-ming, LI Xue. Fabrication and Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Coated with Nano FePO4 as Cathode Material for Lithium-ion Batteries. Journal of Materials Engineering, 2017, 45(11): 49-57.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001257      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/49
[1] BOK J S, LEE J H, LEE B K, et al. Effects of synthetic conditions on electrochemical activity of LiCoO2 prepared from recycled cobalt compounds[J]. Solid State Ionics,2004, 169(1/4):139-144.
[2] LUO W B, DAHN J R. Comparative study of Li[Co1-zAlz]O2 prepared by solid-state and co-precipitation methods[J]. Electrochimica Acta, 2009, 54(20):4655-4661.
[3] MCBREEN J. The application of synchrotron techniques to the study of lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2009, 13(7):1051-1061.
[4] JEFF T. Car industry:charging up the future[J]. Nature, 2008, 456(7221):436-440.
[5] OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 1(7):642-643.
[6] KOYAMA Y, TANAKA I, ADACHI H, et al. Crystal and electronic structures of superstructural Li1-x[LiCo1/3Ni1/3Mn1/3]O2(0 ≤ x ≤ 1)[J]. Journal of Power Sources, 2003, 119:644-648.
[7] YOSHIO M, NOGUCHI H, ITON J I, et al. Preparation and properties of LiCoyMnxNi1-x-yO2 as a cathode for lithium ion batteries[J]. Journal of Power Sources, 2000, 90(2):176-181.
[8] HE Y S, MA Z F, LIAO X Z, et al. Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method[J]. Journal of Power Sources, 2007, 163(2):1053-1058.
[9] WANG Z Y, LIU E, HE C N, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries[J]. Journal of Power Sources, 2013, 236:25-32.
[10] ZHI Y, LI X H, WANG Z X, et al. Surface modification of spherical LiNi1/3Co1/3Mn1/3O2 with A12O3 using heterogeneous nucleation process[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6):1319-1323.
[11] SINHA N N, MUNICHANDRAIAH N. Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 in a single step by an inverse microemulsion route[J]. ACS Applied Materials & Interfaces, 2009, 1(6):1241.
[12] KIM Y, KIM H S, MARTIN S W. Synthesis and electrochemical characteristics of A12O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2006, 52(3):1316-1322.
[13] RILEY L A, ATTA S V, CAVANAGH A S, et al. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Co1/3Mn1/3O2 as a layered-cathode material[J]. Journal of Power Sources, 2011, 196(6):3317-3324.
[14] WU Y. High capacity, surface-modified layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and Solid-State Letters, 2006, 9(5):221-224.
[15] WU F, WANG M, SU Y F, et al. Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2[J]. Journal of Power Sources, 2009, 191(2):628-632.
[16] LI Y, YANG Q, Yao J, et al. Effect of synthesis temperature on the phase structure and electrochemical performance of nickel hydroxide[J]. Ionics, 2010, 16(3):221-225.
[17] LI H J, CHEN G, ZHANG B, et al. Advanced electrochemical performance of Li[Ni(1/3-x)FexCo1/3Mn1/3]O2 as cathode materials for lithium-ion battery[J]. Solid State Communications, 2008, 146(3/4):115-120.
[18] GUO R, SHI P F, CHENG X Q, et al. Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material[J]. Electrochimica Acta, 2009, 54(24):5796-5803.
[19] LEE H J, KIM Y J, HONG Y S, et al. Structural characterization of the surface-modified LixNi0.9Co0.1O2 cathode materials by MPO4 coating (M=Al, Ce, Sr, and Fe) for Li-ion cells[J]. Journal of the Electrochemical Society, 2015, 153(153):781-786.
[20] KIM H S, KIM W S, GU H B, et al. Electrochemical performance of SnPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Journal of New Materials for Electrochemical Systems, 2009, 12(4):207-212.
[21] DOU J Q, KANG X Y, WUMAIER T, et al. Effect of lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2[J]. Journal of Solid State Electrochemistry, 2012, 16(4):1481-1486.
[22] SUN Y K, LU W. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system[J]. Journal of the Electrochemical Society, 2007, 154(12):1083-1087.
[23] KIM H S, KIM Y. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles[J]. Journal of Power Sources, 2006, 161(1):623-627.
[24] LI G, YANG Z, YANG W. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries[J]. Journal of Power Sources, 2008, 183(2):741-748.
[25] QING C, BAI Y, YANG J. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating[J]. Electrochimica Acta, 2011, 56(19):6612-6618.
[26] ZHANG S M, ZHANG J X, XU S J, et al. Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries[J]. Electrochimica Acta, 2013, 88(2):287-293.
[27] LEE B R, NOH H J, MYUNG S T, et al. High-voltage performance of Li[Ni0.55Co0.15Mn0.30]O2 positive electrode material for rechargeable Li-ion batteries[J]. Journal of Electrochemical Society, 2011, 158:A180-A186.
[1] 刘喜山, 曹博, 纪文斐, 孙军, 张胜. 二维层状无机物/硼酸锌复合体系对聚苯乙烯泡沫阻燃性能的影响[J]. 材料工程, 2019, 47(6): 101-107.
[2] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[3] 何清洋, 朱月华, 卓宁泽, 王海波. K2SiF6:Mn4+发光粉的合成及性能研究[J]. 材料工程, 2018, 46(8): 51-56.
[4] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[5] 吕奕菊, 谭家栩, 蒋世权, 文衍宣, 张淑芬. 喷雾干燥条件对合成纳/微结构LiFePO4/C形貌及性能的影响[J]. 材料工程, 2018, 46(12): 85-94.
[6] 闫时建, 郝豫宝, 郭锦, 张敏刚. 正极材料不同配比对锂硫电池性能的影响机理[J]. 材料工程, 2018, 46(11): 71-76.
[7] 吴深, 樊江磊, 刘建秀, 高红霞, 孙爱芝. NiZnFe2O4包覆铁基软磁复合材料的制备及性能[J]. 材料工程, 2017, 45(7): 60-65.
[8] 夏傲, 于婉茹, 谈国强. 葡萄糖对微波水热合成正极材料LiFePO4的结构和性能的影响[J]. 材料工程, 2016, 44(10): 68-73.
[9] 朱靖, 刘永光, 赵艳琴, 王岭. 熔盐法制备梯度型LiNixCoyMn1-x-yO2电极材料的研究[J]. 材料工程, 2012, 0(3): 8-11.
[10] 魏智强, 刘立刚, 冯旺军, 杨华, 张材荣, 闫鹏勋. 碳包裹镍核-壳结构复合纳米颗粒的制备及性能研究[J]. 材料工程, 2011, 0(5): 30-33.
[11] 董桂霖, 于萍, 李冰, 周宁宁, 陈祥俊, 秦占波, 张长桥. 聚氨酯材料包覆聚α-烯烃微胶囊的制备研究[J]. 材料工程, 2010, 0(7): 6-13.
[12] 刘同冈, 刘书进, 吴建, 杨志伊. 电弧法制备碳包覆铁纳米微粒的纯化研究[J]. 材料工程, 2010, 0(5): 64-67,71.
[13] 魏智强, 闫晓燕, 汪宝珍, 朱林, 杨晓红, 闫鹏勋. NiO包覆Ni纳米颗粒的制备及其氧化特性研究[J]. 材料工程, 2010, 0(4): 89-93.
[14] 程志鹏, 徐继明, 朱玉兰, 李栋, 杨毅, 李凤生. 化学镀法制备纳米Ni-B包覆Al复合粉末[J]. 材料工程, 2010, 0(1): 19-22.
[15] 宋丹, 周际东, 姜炜, 张小娟, 李凤生. 超声波辅助制备单分散金属包覆聚苯乙烯导电微球[J]. 材料工程, 2008, 0(11): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn