Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (2): 65-71    DOI: 10.11868/j.issn.1001-4381.2015.001275
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PAN预氧纤维径向结构的光密度法研究
钟珊, 徐帆, 雷帅, 武帅, 徐樑华()
北京化工大学 碳纤维及功能高分子教育部重点实验室, 北京 100029
Optical Density Method of Radial Structure of PAN-based Pre-oxidized Fibers
Shan ZHONG, Fan XU, Shuai LEI, Shuai WU, Liang-hua XU()
Key Laboratory of Carbon Fiber and Functional Polymer(Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(2359 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

针对聚丙烯腈(PAN)预氧纤维径向结构的分布特点,利用PAN预氧化结构对可见光的吸收作用,以可见光在纤维横截面上的透过率(光密度)为衡量标准,建立一种可定量表征PAN预氧化纤维径向结构的方法,即光密度法。结果表明:当测试样品厚度为400nm、光强为800lx时,光密度法表征纤维预氧化结构的径向分布特征最为准确灵敏。与传统的皮芯结构表征方法相比,该方法不仅可表示不同预氧化条件下纤维在相同区域的预氧化程度,还可获得预氧化程度在径向的分布情况。将该方法应用于PAN纤维的预氧化工艺研究,结果显示此方法可精确表达出工艺与结构的相关性,表明光密度法作为一种PAN预氧化程度表征的新方法,可在PAN预氧化径向结构研究中发挥积极的作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟珊
徐帆
雷帅
武帅
徐樑华
关键词 PAN纤维光密度法径向结构预氧化程度    
Abstract

According to the radial distribution characteristics of PAN pre-oxidized fiber, the optical density method which can quantitatively characterize the radial structure of pre-oxidized PAN fiber is established, taking advantage of the light-absorbing of PAN pre-oxidized structure. The results show that when the sample's width is 400 nm and the light intensity is 800 lx, the optical density method characterize the radial distribution characteristics of PAN pre-oxidized fibers the most effectively and accurately. Compared with the traditional skin-core structure characterization method, this method not only expresses the pre-oxidized degree in the same domain under different pre-oxidation processes, but also obtains the radial distribution of pre-oxidized degree. Applying this method to the process research of pre-oxidized PAN fiber, the results show that this method can reveal a correlation between the process and structure, indicating the optical density method as a new method for characterization of PAN pre-oxidized fiber can play an active role in the study of pre-oxidized PAN radial structure.

Key wordsPAN fiber    optical density method    radial structure    pre-oxidation
收稿日期: 2015-10-25      出版日期: 2017-02-23
中图分类号:  TQ342+.741  
基金资助:国家973项目(2011CB605602)
通讯作者: 徐樑华     E-mail: xulh@mail.buct.edu.cn
作者简介: 徐樑华(1960-),男,研究员,博士生导师,主要从事高性能聚丙烯腈基碳纤维的研究,联系地址:北京市朝阳区北京化工大学碳纤维及功能高分子教育部重点实验室(100029),xulh@mail.buct.edu.cn
引用本文:   
钟珊, 徐帆, 雷帅, 武帅, 徐樑华. PAN预氧纤维径向结构的光密度法研究[J]. 材料工程, 2017, 45(2): 65-71.
Shan ZHONG, Fan XU, Shuai LEI, Shuai WU, Liang-hua XU. Optical Density Method of Radial Structure of PAN-based Pre-oxidized Fibers. Journal of Materials Engineering, 2017, 45(2): 65-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001275      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/65
Fig.1  不同热处理时间下的PAN纤维截面结构图 (a)30min;(b)40min;(c)50min;(d)60min;(e)70min
Fig.2  皮芯比与热处理时间之间的关系
Fig.3  环化结构相对含量变化趋势
(a)不同热处理时间下,预氧纤维的核磁谱图;(b)特征环化结构相对含量随热处理时间的变化趋势
Fig.4  被测区域在PAN纤维径向分布示意图
PatameterValue
Normalized position-6/7-4/7-2/702/74/76/7
Dm0.780.7850.8090.8340.8020.7810.778
Table 1  径向分布数据点上对应Dm
Fig.5  光强700lx且不同样品厚度下PAN预氧纤维截面结构图
(a)1000nm;(b)500nm;(c)300nm
Fig.6  光强700lx且不同样品厚度下PAN预氧纤维径向平均光密度分布
(a)1000nm;(b)500nm;(c)300nm
Fig.7  在样品厚度400nm且不同光强度下PAN预氧纤维径向平均光密度分布图
(a)300lx;(b)500lx;(c)800lx
Fig.8  PAN预氧纤维径向平均光密度随热处理时间的变化分布图
Fig.9  PAN预氧纤维平均光密度标准差变化趋势图
1 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010:189.
2 KIMIYOSHI , NAITO K . The effect of high-temperature vapor deposition polymerization of polyimide coating on tensile properties of polyacrylonitrile- and pitch-based carbon fibers[J]. Journal of Materials Science, 2013, 48 (17): 6056- 6064.
doi: 10.1007/s10853-013-7402-x
3 LIU X , ZHU C , GUO J , et al. Nanoscale dynamic mechanical imaging of the skin-core difference:from PAN precursors to carbon fibers[J]. Materials Letters, 2014, 128 (6): 417- 420.
4 李常清, 肖阳, 赵洪江, 等. 氧化结构对聚丙烯腈预氧纤维热稳定性的影响[J]. 材料热处理学报, 2015, 36 (5): 35- 38.
4 LI C Q , XIAO Y , ZHAO H J , et al. The effect of oxidation structure on thermal stability of PAN based pre-oxidization fibers[J]. Transactions of Materials and Heat Treatment, 2015, 36 (5): 35- 38.
5 LV M Y , GE H Y , CHEN J , et al. Study on the chemical structure and skin-core structure of polyacrylonitrile-based fibers during stabilization[J]. Journal of Polymer Research, 2008, 16 (5): 513- 517.
6 JU A Q , LIU Z , LUO M , et al. Molecular design and pre-oxidation mechanism of acrylonitrile copolymer used as carbon fiber precursor[J]. Journal of Polymer Research, 2013, 20 (12): 1- 17.
7 SU C J , CAO A J , LUO S , et al. Evolution of the skin-core structure of PAN-based carbon fibers with high temperature treatment[J]. Carbon, 2013, 51 (1): 436- 437.
8 刘杰, 李佳, 王雷, 等. 预氧化过程中PAN纤维皮芯结构的变化[J]. 新型炭材料, 2008, 23 (2): 177- 184.
8 LIU J , LI J , WANG L , et al. The evolution of the core/shell structure of polyacrylonitrile fibers during pre oxidation[J]. New Carbon Materials, 2008, 23 (2): 177- 184.
9 肖建文, 徐樑华, 廉信淑, 等. 预氧丝皮芯结构对碳纤维性能的影响[J]. 化工新型材料, 2013, 41 (8): 117- 119.
9 XIAO J W , XU L H , LIAN X S , et al. Effect of skin-core structure of PAN·OF on properties of carbon fibers[J]. New Chemical Materials, 2013, 41 (8): 117- 119.
10 吕翔. 病理图像定量分析及其测量误差的控制[J]. 中国体视学与图像分析, 2002, 7 (1): 58- 62.
10 LV X . Quantitative pathologic image analysis and the control of its measuring errors[J]. Chinese Journal of stereology and Image Analysis, 2002, 7 (1): 58- 62.
11 李枫. 图像分析中光密度参数物理意义的正确理解和使用[J]. 解剖学杂志, 2009, 32 (2): 271- 274.
11 LI F . The correct understanding and use of the physical meaning of the optical density parameters in image analysis[J]. Chinese Journal of Anatomy, 2009, 32 (2): 271- 274.
12 王英娟, 贺敬, 李敬, 等. 光密度法测定蛋白核小球藻生物量[J]. 西北大学学报, 2012, 42 (1): 60- 63.
12 WANG Y J , HE J , LI J , et al. Determination of Chlorella pyrenoidosa biomass using optical density method[J]. Journal of Northwest University, 2012, 1 (1): 60- 63.
13 戚明之, 王海军, 欧阳琴, 等. 光密度法研究聚丙烯腈纤维的热稳定化过程[J]. 合成纤维工业, 2010, 33 (6): 24- 27.
13 QI M Z , WANG H J , OUYANG Q , et al. Optical densitometry study on thermal stabilization of polyacrylonitrile fibers[J]. China Synthetic Fiber Industry, 2010, 33 (6): 24- 27.
14 王雪飞, 张永刚, 戚明之, 等. 光密度法研究预氧化工艺对纤维皮芯结构的影响[J]. 合成纤维, 2011, 40 (8): 1- 4.
14 WANG X F , ZHANG Y G , QI M Z , et al. Optical densitometric study on the influence of pre-oxidation process on skin-core structure of polyacrylonitrile fiber[J]. Synthetic Fiber in China, 2011, 40 (8): 1- 4.
15 张琪. 预氧化过程中PAN纤维径向结构的形成机制[D].北京:北京化工大学, 2014.
15 ZHANG Q.The formation mechanism for the radial structure of PAN fiber during pre-oxidative stabilization[D].Beijing:Beijing University of chemical Technolgy.2014.
16 昌志龙. 低温热处理过程中环境介质对PAN纤维化学结构及影响规律研究[D]. 北京:北京化工大学,2014.
16 CHANG Z L.The effect of atomosphere medium on poly acrylonitrile fiker's chemical structure during thermal stabilization[D].Beijing:Beijing university of Chemical Technology.2014.
[1] 王一苇, 王云峰, 王宇, 高爱军, 徐樑华. PAN预氧纤维径向结构分布特征对石墨纤维的影响[J]. 材料工程, 2021, 49(1): 112-118.
[2] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn