Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (5): 59-63    DOI: 10.11868/j.issn.1001-4381.2015.001283
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚丙烯腈热稳定化纤维的裂解行为
雷帅, 张校, 钟珊, 刘正博, 曹维宇, 徐樑华()
北京化工大学 碳纤维及功能高分子教育部重点实验室, 北京 100029
Degradation Behavior of Thermal Stabilized Polyacrylonitrile Fibers
Shuai LEI, Xiao ZHANG, Shan ZHONG, Zheng-bo LIU, Wei-yu CAO, Liang-hua XU()
Key Laboratory of Carbon Fiber and Functional Polymer (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(1747 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在聚丙烯腈基碳纤维(PANCF)制备过程中会有40%~50%的质量损失,主要发生在300~800℃范围内。对PAN裂解失重行为的研究有利于理解PANCF类石墨结构的形成机理,为制备高性能碳纤维和提高碳化收率提供理论依据。通过热重分析法(TGA)模拟PAN纤维的裂解失重过程,结果表明:在空气中进行稳定化的纤维主要有两个阶段的裂解,分别受腈基的环化率和氧含量控制。环化率和氧含量通过影响裂解行为在碳纤维中形成的缺陷结构,最终影响碳纤维的致密性。环化率越高,形成的缺陷结构越少,碳纤维的致密性越好;相反氧含量越高,形成缺陷结构越多,碳纤维的致密性越差。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷帅
张校
钟珊
刘正博
曹维宇
徐樑华
关键词 聚丙烯腈稳定化裂解碳纤维体密度    
Abstract

In the temperature range of 300-800℃, 40%-50% of the mass lost during the processing of polyacrylonitrile based carbon fiber (PANCF). Understanding the degradation behavior will be valuable in understanding the formation mechanism of pseudo-graphite structure, and providing theoretic basis for producing high performance carbon fiber and increasing the carbonization yield. The simulation of the degradation progress was carried out on the thermogravimetric analyzer (TGA), the results show that there are two degradation steps for PAN fiber stabilized in air, and controlled by cyclization coefficient and oxygen content. The cyclization coefficient and oxygen content are effective to the density of carbon fiber by influencing the degradation behavior, which cause defects in the fiber. The higher cyclization coefficient leads to form less structural defects and higher density of the fiber; on the contrary, the higher oxygen content leads to form more structural defects and lower density of the fiber.

Key wordspolyacrylonitrile    stabilization    degradation    carbon fiber    bulk density
收稿日期: 2015-10-26      出版日期: 2017-05-17
中图分类号:  TQ342.31  
基金资助:国家科技支撑计划(2014BAE07B00)
通讯作者: 徐樑华     E-mail: xulh@mail.buct.edu.cn
作者简介: 徐樑华(1960-), 男, 研究员, 主要从事高性能聚丙烯腈基碳纤维的研究, 联系地址:北京市朝阳区北三环东路15号北京化工大学碳纤维及复合材料研究所(100029), E-mail:xulh@mail.buct.edu.cn
引用本文:   
雷帅, 张校, 钟珊, 刘正博, 曹维宇, 徐樑华. 聚丙烯腈热稳定化纤维的裂解行为[J]. 材料工程, 2017, 45(5): 59-63.
Shuai LEI, Xiao ZHANG, Shan ZHONG, Zheng-bo LIU, Wei-yu CAO, Liang-hua XU. Degradation Behavior of Thermal Stabilized Polyacrylonitrile Fibers. Journal of Materials Engineering, 2017, 45(5): 59-63.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001283      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/59
Fig.1  共聚PAN原丝和空气中稳定化纤维的红外光谱
Fig.2  PAN原丝(a)和空气中稳定化的纤维(b)在N2中从室温至1000℃的TG和DTG曲线
Fig.3  具有不同环化率的PAN稳定化纤维的红外光谱
Fig.4  不同环化率(a)和氧含量(b)的PAN稳定化纤维在氮气中从室温至1000℃的TG和DTG曲线
Fig.5  稳定化纤维的氧含量(a)和环化率(b)对其高温裂解后拉曼光谱D峰的半高宽的影响
85%≤η≤ 87% 7.6%≤w(O)≤ 7.7%
w(O)/% ρv/(g·cm-3) η/% ρv /(g·cm-3)
7.38 1.7872 71.5 1.7751
7.58 1.7790 72.5 1.7758
7.64 1.7765 76.7 1.7759
7.69 1.7734 79.4 1.7778
Table 1  稳定化纤维的氧含量w(O)和环化率η与碳纤维体密度ρv的关系
1 YUSOF N , ISMAIL A F . Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review[J]. Journal of Analytical and Applied Pyrolysis, 2012, 93, 1- 13.
doi: 10.1016/j.jaap.2011.10.001
2 USAMI T , ITOH T , OHTANI H , et al. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state 13C nuclear magnetic resonance, and fourier transform infrared spectroscopy[J]. Macromolecules, 1990, 23 (9): 2460- 2465.
doi: 10.1021/ma00211a009
3 JING M , WANG C G , WANG Q , et al. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃[J]. Polymer Degradation and Stability, 2007, 92 (9): 1737- 1742.
doi: 10.1016/j.polymdegradstab.2007.05.020
4 张晓崴, 覃福作, 童元建, 等. TGA-FTIR联用技术研究PAN预氧化纤维的热解[J]. 合成纤维工业, 2007, 30 (4): 64- 65.
4 ZHANG X W , QIN F Z , TONG Y J , et al. Study on the degradation of pre-oxidized PAN fiber by using TGA-FTIR coupling technique[J]. Synthetic Fiber Industry, 2007, 30 (4): 64- 65.
5 RAHAMAN M S A , ISMAIL A F , MUSTAFA A . A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007, 92 (8): 1421- 1432.
doi: 10.1016/j.polymdegradstab.2007.03.023
6 QIN X Y , LU Y G , XIAO H , et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J]. Carbon, 2012, 50 (12): 4459- 4469.
doi: 10.1016/j.carbon.2012.05.024
7 XIAO H , LU Y G , ZHAO W Z , et al. The effect of heat treatment temperature and time on the microstructure and mechanical properties of PAN-based carbon fibers[J]. Journal of Materials Science, 2014, 49 (2): 794- 804.
doi: 10.1007/s10853-013-7762-2
8 肖春, 侯卫权, 邹武, 等. 热处理温度对炭纤维结构和性能的影响[J]. 炭素技术, 2006, 25 (6): 15- 18.
8 XIAO C , HOU W Q , ZOU W , et al. The effect of thermal treatment temperature on the structure and property of carbon fibers[J]. Carbon Technology, 2006, 25 (6): 15- 18.
9 PAIVA M C , KOTASTHANE P , EDIE D D , et al. UV stabilization route for melt-processible PAN-based carbon fibers[J]. Carbon, 2003, 41 (7): 1399- 1409.
doi: 10.1016/S0008-6223(03)00041-1
10 宋云鹏, 吕永根, 秦显营, 等. 氮气中环化热处理对聚丙烯腈纤维不熔化的影响[J]. 材料导报, 2009, 23 (9): 54- 56.
10 SONG Y P , LV Y G , QIN X Y , et al. The influence of cyclization thermal-treatment under nitrogen to the infusibility of polyacrylonitrile fiber[J]. Materials Review, 2009, 23 (9): 54- 56.
11 张丽珍, 吕春祥, 吕永根, 等. 聚丙烯腈纤维在预氧化过程中的结构和热性能转变[J]. 新型炭材料, 2005, 20 (2): 144- 150.
11 ZHANG L Z , LV C X , LV Y G , et al. Transformation of structure and thermal performance of polyacrylonitrile fiber during pre-oxidative process[J]. New Carbon Materials, 2005, 20 (2): 144- 150.
12 温月芳, 李辉, 曹霞, 等. 聚丙烯腈纤维预氧化程度的表征[J]. 纺织学报, 2008, 29 (12): 1- 5.
doi: 10.3321/j.issn:0253-9721.2008.12.001
12 WEN Y F , LI H , CAO X , et al. Characterization of the pre-oxidative extent of polyacrylonitrile fiber[J]. Journal of Textile Research, 2008, 29 (12): 1- 5.
doi: 10.3321/j.issn:0253-9721.2008.12.001
13 王成国, 井敏, 王延相, 等. 碳纤维用聚丙烯腈基预氧丝碳化裂解过程研究进展[J]. 现代化工, 2008, 28 (7): 22- 26.
13 WANG C G , JIN M , WANG Y X , et al. Research progress of the carbonizing degradation process of PAN pre-oxidized fiber using for carbon fiber[J]. Modern Chemistry, 2008, 28 (7): 22- 26.
14 WATT W . Pyrolysis of polyacrylonitrile[J]. Nature, 1969, 222, 265- 266.
doi: 10.1038/222265a0
15 WATT W . Nitrogen evolution during the pyrolysis of polyacrylonitrile[J]. Nature Physical Science, 1972, 235, 10- 11.
16 孙瑾, 潘鼎, 江绍群, 等. 用DSC法研究聚丙烯腈纤维的热性能及其预氧化过程[J]. 中国纺织大学学报, 1990, 16 (1): 51- 56.
16 SUN J , PAN D , JIANG S Q , et al. Study on the thermal property and the pre-oxidation process of polyacrylonitrile fiber using DSC[J]. Journal of China Textile University, 1990, 16 (1): 51- 56.
17 JAWHARI T , ROID A , CASADO J . Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33 (11): 1561- 1565.
doi: 10.1016/0008-6223(95)00117-V
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[3] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[4] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[5] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[6] 高杰明, 黄晖, 石薇, 魏午, 文胜平, 韩颖, 聂祚仁. 退火处理对含铒Al-Mg-Zn合金组织和性能的影响[J]. 材料工程, 2022, 50(11): 101-108.
[7] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[8] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[9] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[10] 刘旭, 徐海, 徐立新, 张宏, 周琼. 改性碳纤维增强尼龙6复合材料的制备及性能[J]. 材料工程, 2021, 49(4): 128-134.
[11] 顾善群, 张代军, 付善龙, 刘燕峰, 李军, 邹齐, 陈祥宝. 碳纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(11): 73-82.
[12] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[13] 黄成杰, 杨敏, 李红, 任慕苏, 孙晋良. 三维织造预制体微观结构及致密化[J]. 材料工程, 2021, 49(1): 104-111.
[14] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[15] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn