Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 8-15    DOI: 10.11868/j.issn.1001-4381.2015.001320
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
重型燃机定向结晶空心叶片凝固过程的实验与模拟
卢玉章1, 熊英2, 彭建强3, 申健1, 郑伟1, 张功1, 谢光1
1. 中国科学院金属研究所, 沈阳 110016;
2. 中国南方航空工业集团有限公司, 湖南 株洲 412002;
3. 哈尔滨汽轮机厂有限责任公司, 哈尔滨 150046
Simulation and Experiment of Solidification Process for Directionally Solidified Industrial Gas Turbine Hollow Blades
LU Yu-zhang1, XIONG Ying2, PENG Jian-qiang3, SHEN Jian1, ZHENG Wei1, ZHANG Gong1, XIE Guang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2. China National South Aviation Industry Company Limited, Zhuzhou 412002, Hunan, China;
3. Harbin Turbine Company Limited, Harbin 150046, China
全文: PDF(5487 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用ProCAST软件系统研究HRS(High Rate Solidification)与LMC(Liquid Metal Cooling)工艺下,不同工艺参数对重型燃机用大型定向结晶空心叶片凝固过程的影响。结果表明:与HRS工艺相比,LMC工艺下叶片的糊状区宽度更小,固/液界面形状更加平直。LMC工艺下叶片的纵向温度梯度约为HRS工艺下的3倍;利用LMC工艺制备该燃机叶片时冷却速率为0.3~2.00℃/s,远高于HRS工艺时的冷却速率(0.05~0.16℃/s);LMC工艺下,采用低的保温炉温度仍可保证叶片获得高的温度梯度和冷却速率;而为避免缘板处杂晶对原始晶粒的阻碍,HRS工艺应当采用高的保温炉温度与更低的抽拉速率。实验与模拟结果均表明:与HRS工艺相比,利用LMC工艺制备的燃机叶片,枝晶组织显著细化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢玉章
熊英
彭建强
申健
郑伟
张功
谢光
关键词 定向凝固工艺优化数值模拟燃机叶片    
Abstract:The effect of different process parameters on solidification of industrial gas turbine hollow blades via HRS (High Rate Solidification) and LMC (Liquid Metal Cooling) was studied by ProCAST software. The results show that the paste zone via LMC process is much narrower than that by HRS process and the shape of the S/L (solid/liquid) interface is more flat. The axial thermal gradient of the blade by LMC process is about three times higher than that by HRS process. The cooling rate of the blade is 0.3-2.00℃/s by LMC process, which is far higher than that by HRS process (0.05-0.16℃/s). In LMC process, low holding temperature can still ensure high temperature gradient and cooling rate of the blade; while in order to avoid blocking of stray grains to the initial grains at the platform of the blade, HRS process should adopt high holding temperature and lower withdrawal rate. The calculated and the measured results show that compared with the blade prepared by HRS process, the PDAS (primary dendrite arm spacing) is much finer in the blade prepared by LMC process.
Key wordsdirectional solidification    process optimization    numerical simulation    IGT blade
收稿日期: 2015-10-31      出版日期: 2018-01-18
中图分类号:  TG132  
通讯作者: 卢玉章(1984-),男,博士,助理研究员,主要研究方向为LMC定向凝固过程工艺优化,联系地址:沈阳市沈河区文化路72号(110016),E-mail:yzlu@imr.ac.cn     E-mail: yzlu@imr.ac.cn
引用本文:   
卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
LU Yu-zhang, XIONG Ying, PENG Jian-qiang, SHEN Jian, ZHENG Wei, ZHANG Gong, XIE Guang. Simulation and Experiment of Solidification Process for Directionally Solidified Industrial Gas Turbine Hollow Blades. Journal of Materials Engineering, 2018, 46(1): 8-15.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001320      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/8
[1] 张健,申健,卢玉章,等.燃气轮机用大型定向结晶铸件制备及组织与性能研究[J].金属学报,2010,46(11):1322-1326. ZHANG J, SHEN J, LU Y Z, et al.Processing, microstructure and mechanical properties of large directionally solidified castings for industrial gas turbine applications[J]. Acta Metallurgica Sinica, 2010, 46(11):1322-1326.
[2] KHAN T.Heat-resistant materials/superalloy[J]. Advanced Materials and Processes, 1990, 137(1):19-21.
[3] KONTER M, THUMAANN M. Material and manufacturing of advanced industrial gas turbine component[J]. Journal of Materials Processing Technology, 2001, 117(3):386-390.
[4] ZHANG J, LOU L H. Directional solidification assisted by liquid metal cooling[J]. Journal of Materials Science and Technology, 2007, 23(3):289-300.
[5] 刘世忠,李嘉荣,唐定忠,等.单晶高温合金定向凝固过程数值模拟[J].材料工程,1999(7):40-42. LIU S Z, LI J R, TANG D Z, et al. Numerical simulation of directional solidification process of single crystal superalloys[J]. Journal of Materials Engineering, 1999(7):40-42.
[6] 杨亮,李嘉荣,金海鹏,等.DD6单晶精铸薄壁试样定向凝固过程数值模拟[J].材料工程, 2014(11):15-22. YANG L, LI J R, JIN H P, et al. Numerical simulation of directional solidification process of DD6 single crystal superalloy thin-walled specimen[J].Journal of Materials Engineering, 2014(11):15-22.
[7] 熊继春,李嘉荣,韩梅,等.浇注温度对DD6单晶高温合金凝固组织的影响[J].材料工程,2009(2):43-46. XIONG J C, LI J R,HAN M, et al. Effects of poring temperature on the solidification microstructure of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2009(2):43-46.
[8] KERMANPUR A, VARAHRAM N, DAVAMI P, et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process[J]. Metallurgical and Materials Transactions, 2000, 31(6):1293-1304.
[9] ELLIOTT A J,TIN S, KING W T,et al.Directional solidification of large superalloy castings with radiation and liquid-metal cooling:a comparative assessment[J]. Metallurgical and Materials Transactions A, 2004, 35(10):3221-3231.
[10] MILLER J D, POLLOCK T M. Process simulation for the directional solidification of a ti-crystal ring segment via the bridgman and liquid-metal-cooling processes[J]. Metallurgical and Materials Transactions A, 2012, 43(7):2411-2425.
[11] 卢玉章,申健,郑伟,等.单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11):1-8. LU Y Z, SHEN J, ZHENG W, et al.Simulation of parameters optimization in single crystal casting solidification[J]. Journal of Materials Engineering, 2016, 44(11):1-8.
[12] 卢玉章,王大伟,张健,等. 液态金属冷却法制备单晶铸件凝固过程的实验与模拟[J]. 铸造, 2009, 58(3):245-248. LU Y Z, WANG D W, ZHANG J, et al. Numerical simulation and experimental observation of single crystal castings processed by liquid metal cooling technique[J]. Foundry, 2009, 58(3):245-248.
[13] HUNT J D. Cellular and primary dendrite spacings[C]//ARGENT B B. International Conference on Solidification and Casting of Metals. London:The Metal Society, 1979:3-9.
[14] KURZ W, FISHER J D. Dendrite growth at the limit of stability:tip radius and spacing[J]. Acta Materialia, 1981,29(1):11-20.
[15] ELLIOTT A J, POLLOCK T M. Issues in processing by the liquid-Sn assisted directional solidification technique[C]//POLLOCK T M, KISSINGER R D, BOWMAN R R, et al. Superalloys 2004. Warrendale, PA:TMS, 2004:421-430.
[16] ELLIOTT A J. Directional solidification of large cross-section Ni-base superalloy casting via liquid metal cooling[D]. Michigan:The University of Michigan, 2005:74-122.
[17] POLLOCKT M, MURPHY W H. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A, 1996, 27(4):1081-1094.
[18] 唐定中,刘晓光,李鑫,等. DD6单晶高温合金与陶瓷型壳的界面反应[J]. 航空材料学报, 2015, 35(6):1-7. TANG D Z, LIU X G, LI X, et al. Interface reaction between DD6 single crystal superalloy and ceramic mold[J]. Journal of Aeronautical Materials, 2015, 35(6):1-7.
[1] 戚云超, 方国东, 梁军, 谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1): 27-33.
[2] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[3] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[4] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[5] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[6] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[7] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[8] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[9] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[10] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[11] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
[12] 李伟东, 张金栋, 李韶亮, 刘刚, 钟翔屿, 包建文. 耐高温双马来酰亚胺树脂的固化反应动力学和TTT图[J]. 材料工程, 2016, 44(9): 44-51.
[13] 马洛宁, 王天佑, 张峥. 短时氧化对定向凝固高温合金不同取向腐蚀性能的影响[J]. 材料工程, 2016, 44(7): 78-87.
[14] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[15] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn