Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (1): 8-15    DOI: 10.11868/j.issn.1001-4381.2015.001320
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
重型燃机定向结晶空心叶片凝固过程的实验与模拟
卢玉章1,*(), 熊英2, 彭建强3, 申健1, 郑伟1, 张功1, 谢光1
1 中国科学院金属研究所, 沈阳 110016
2 中国南方航空工业集团有限公司, 湖南 株洲 412002
3 哈尔滨汽轮机厂有限责任公司, 哈尔滨 150046
Simulation and Experiment of Solidification Process for Directionally Solidified Industrial Gas Turbine Hollow Blades
Yu-zhang LU1,*(), Ying XIONG2, Jian-qiang PENG3, Jian SHEN1, Wei ZHENG1, Gong ZHANG1, Guang XIE1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 China National South Aviation Industry Company Limited, Zhuzhou 412002, Hunan, China
3 Harbin Turbine Company Limited, Harbin 150046, China
全文: PDF(5487 KB)   HTML ( 54 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用ProCAST软件系统研究HRS(High Rate Solidification)与LMC(Liquid Metal Cooling)工艺下, 不同工艺参数对重型燃机用大型定向结晶空心叶片凝固过程的影响。结果表明:与HRS工艺相比, LMC工艺下叶片的糊状区宽度更小, 固/液界面形状更加平直。LMC工艺下叶片的纵向温度梯度约为HRS工艺下的3倍; 利用LMC工艺制备该燃机叶片时冷却速率为0.3~2.00℃/s, 远高于HRS工艺时的冷却速率(0.05~0.16℃/s); LMC工艺下, 采用低的保温炉温度仍可保证叶片获得高的温度梯度和冷却速率; 而为避免缘板处杂晶对原始晶粒的阻碍, HRS工艺应当采用高的保温炉温度与更低的抽拉速率。实验与模拟结果均表明:与HRS工艺相比, 利用LMC工艺制备的燃机叶片, 枝晶组织显著细化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢玉章
熊英
彭建强
申健
郑伟
张功
谢光
关键词 定向凝固工艺优化数值模拟燃机叶片    
Abstract

The effect of different process parameters on solidification of industrial gas turbine hollow blades via HRS(High Rate Solidification) and LMC(Liquid Metal Cooling) was studied by ProCAST software.The results show that the paste zone via LMC process is much narrower than that by HRS process and the shape of the S/L(solid/liquid) interface is more flat.The axial thermal gradient of the blade by LMC process is about three times higher than that by HRS process.The cooling rate of the blade is 0.3-2.00℃/s by LMC process, which is far higher than that by HRS process(0.05-0.16℃/s).In LMC process, low holding temperature can still ensure high temperature gradient and cooling rate of the blade; while in order to avoid blocking of stray grains to the initial grains at the platform of the blade, HRS process should adopt high holding temperature and lower withdrawal rate.The calculated and the measured results show that compared with the blade prepared by HRS process, the PDAS(primary dendrite arm spacing) is much finer in the blade prepared by LMC process.

Key wordsdirectional solidification    process optimization    numerical simulation    IGT blade
收稿日期: 2015-10-31      出版日期: 2018-01-18
中图分类号:  TG132  
基金资助:国家重大科学仪器设备开发专项资助项目(2012YQ22023304);国家自然科学基金(51631008)
通讯作者: 卢玉章     E-mail: yzlu@imr.ac.cn
作者简介: 卢玉章(1984-), 男, 博士, 助理研究员, 主要研究方向为LMC定向凝固过程工艺优化, 联系地址:沈阳市沈河区文化路72号(110016), E-mail:yzlu@imr.ac.cn
引用本文:   
卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
Yu-zhang LU, Ying XIONG, Jian-qiang PENG, Jian SHEN, Wei ZHENG, Gong ZHANG, Guang XIE. Simulation and Experiment of Solidification Process for Directionally Solidified Industrial Gas Turbine Hollow Blades. Journal of Materials Engineering, 2018, 46(1): 8-15.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001320      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/8
Alloy HRS withdrawal rate/(mm·min-1) LMC withdrawal rate/(mm·min-1) Mold-heatertemperature/℃ Floating bafflethickness/mm
DZ411 1, 3, 5 3, 5, 7, 10, 12 1440, 1480, 1500, 1520 25
Table 1  模拟所用的工艺参数
Fig.1  HRS工艺下, 不同抽拉速率时, 叶片110mm(1), 180mm(2), 240mm(3)和280mm(4)位置处的固/液界面形态
(a) 3mm/min; (b) 5mm/min
Fig.2  LMC工艺下, 不同抽拉速率时, 叶片110mm(1), 180mm(2), 240mm(3)和280mm(4)处的固/液界面形态
(a)5mm/min; (b)10mm/min; (c)12mm/min
Fig.3  不同工艺下叶片的纵向温度梯度
Fig.4  HRS工艺下抽拉速率对叶片冷却速率的影响
Fig.5  不同工艺下, 保温炉温度为1480℃(1), 1500℃(2)和1520℃(3)时固/液界面的形状
(a) HRS; (b) LMC
Fig.6  LMC以及HRS工艺下保温炉温度对纵向温度梯度的影响
Heat temperature/℃ Cooling rate/(℃·s-1)
HRS LMC
1480 0.07 0.53
1500 0.09 0.63
1520 0.10 0.70
Table 2  保温炉温度对冷却速率的影响
Fig.7  模拟(a)以及实验(b)所得到的叶片缘板处的晶粒组织
Fig.8  不同工艺下叶身(1)榫头(2)的典型枝晶组织 (a)HRS; (b)LMC
Fig.9  叶片PDAS的LMC工艺模拟(LMC-M)、实验结果(LMC-E)与HRS工艺实验结果的对比
1 张健, 申健, 卢玉章, 等. 燃气轮机用大型定向结晶铸件制备及组织与性能研究[J]. 金属学报, 2010, 46 (11): 1322- 1326.
1 ZHANG J , SHEN J , LU Y Z , et al. Processing, microstructure and mechanical properties of large directionally solidified castings for industrial gas turbine applications[J]. Acta Metallurgica Sinica, 2010, 46 (11): 1322- 1326.
2 KHAN T . Heat-resistant materials/superalloy[J]. Advanced Materials and Processes, 1990, 137 (1): 19- 21.
3 KONTER M , THUMAANN M . Material and manufacturing of advanced industrial gas turbine component[J]. Journal of Materials Processing Technology, 2001, 117 (3): 386- 390.
doi: 10.1016/S0924-0136(01)00785-3
4 ZHANG J , LOU L H . Directional solidification assisted by liquid metal cooling[J]. Journal of Materials Science and Technology, 2007, 23 (3): 289- 300.
5 刘世忠, 李嘉荣, 唐定忠, 等. 单晶高温合金定向凝固过程数值模拟[J]. 材料工程, 1999, (7): 40- 42.
5 LIU S Z , LI J R , TANG D Z , et al. Numerical simulation of directional solidification process of single crystal superalloys[J]. Journal of Materials Engineering, 1999, (7): 40- 42.
6 杨亮, 李嘉荣, 金海鹏, 等. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程, 2014, (11): 15- 22.
doi: 10.11868/j.issn.1001-4381.2014.11.003
6 YANG L , LI J R , JIN H P , et al. Numerical simulation of directional solidification process of DD6 single crystal superalloy thin-walled specimen[J]. Journal of Materials Engineering, 2014, (11): 15- 22.
doi: 10.11868/j.issn.1001-4381.2014.11.003
7 熊继春, 李嘉荣, 韩梅, 等. 浇注温度对DD6单晶高温合金凝固组织的影响[J]. 材料工程, 2009, (2): 43- 46.
7 XIONG J C , LI J R , HAN M , et al. Effects of poring temperature on the solidification microstructure of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2009, (2): 43- 46.
8 KERMANPUR A , VARAHRAM N , DAVAMI P , et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process[J]. Metallurgical and Materials Transactions, 2000, 31 (6): 1293- 1304.
doi: 10.1007/s11663-000-0017-z
9 ELLIOTT A J , TIN S , KING W T , et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling:a comparative assessment[J]. Metallurgical and Materials Transactions A, 2004, 35 (10): 3221- 3231.
doi: 10.1007/s11661-004-0066-z
10 MILLER J D , POLLOCK T M . Process simulation for the directional solidification of a ti-crystal ring segment via the bridgman and liquid-metal-cooling processes[J]. Metallurgical and Materials Transactions A, 2012, 43 (7): 2411- 2425.
11 卢玉章, 申健, 郑伟, 等. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44 (11): 1- 8.
doi: 10.11868/j.issn.1001-4381.2016.11.001
11 LU Y Z , SHEN J , ZHENG W , et al. Simulation of parameters optimization in single crystal casting solidification[J]. Journal of Materials Engineering, 2016, 44 (11): 1- 8.
doi: 10.11868/j.issn.1001-4381.2016.11.001
12 卢玉章, 王大伟, 张健, 等. 液态金属冷却法制备单晶铸件凝固过程的实验与模拟[J]. 铸造, 2009, 58 (3): 245- 248.
12 LU Y Z , WANG D W , ZHANG J , et al. Numerical simulation and experimental observation of single crystal castings processed by liquid metal cooling technique[J]. Foundry, 2009, 58 (3): 245- 248.
13 HUNT J D. Cellular and primary dendrite spacings[C]//ARGENT B B. International Conference on Solidification and Casting of Metals. London: The Metal Society, 1979: 3-9.
14 KURZ W , FISHER J D . Dendrite growth at the limit of stability:tip radius and spacing[J]. Acta Materialia, 1981, 29 (1): 11- 20.
doi: 10.1016/0001-6160(81)90082-1
15 ELLIOTT A J, POLLOCK T M. Issues in processing by the liquid-Sn assisted directional solidification technique[C]//POLLOCK T M, KISSINGER R D, BOWMAN R R, et al. Superalloys 2004. Warrendale, PA: TMS, 2004: 421-430.
16 ELLIOTT A J. Directional solidification of large cross-section Ni-base superalloy casting via liquid metal cooling[D]. Michigan: The University of Michigan, 2005: 74-122.
17 POLLOCKT M , MURPHY W H . The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A, 1996, 27 (4): 1081- 1094.
doi: 10.1007/BF02649777
18 唐定中, 刘晓光, 李鑫, 等. DD6单晶高温合金与陶瓷型壳的界面反应[J]. 航空材料学报, 2015, 35 (6): 1- 7.
18 TANG D Z , LIU X G , LI X , et al. Interface reaction between DD6 single crystal superalloy and ceramic mold[J]. Journal of Aeronautical Materials, 2015, 35 (6): 1- 7.
[1] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[2] 吴笑非, 姚建省, 王丽丽, 董龙沛, 武振强, 沈滨, 杨小薇. Al2O3型壳与定向凝固合金IC10的界面反应[J]. 材料工程, 2021, 49(7): 141-147.
[3] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[4] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[5] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[6] 廖向娜, 贺雍律, 张鉴炜, 鞠苏, 江大志, 刘佳音, 刘钧. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11.
[7] 戚云超, 方国东, 梁军, 谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1): 27-33.
[8] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[9] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[10] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[11] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[12] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[13] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[14] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[15] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn