Perovskite solar cells(PSCs) have been developed rapidly as one of the most remarkably growing photovoltaic technologies in the last five years. The power conversion efficiency(PCE) of the solar cells has been unprecedentedly increased over the relatively short period. It is of great significance to study the perovskite materials in this kind of solar cells for improving the efficiency. The most focused issues as well as the main progress in varied fabrication techniques and synthesis of new materials in recent years were reviewed in this paper. The characteristics and improvements of varied fabrication techniques are introduced in detail, the necessity and the problems facing for new materials synthesis were analyzed. Finally, a perspective view on reducing the toxicity of perovskite, preparing large-scale perovskite solar cells, and the cost reduction was given to provide the direction for the future research of high-efficiency and stable perovskite solar cells.
LIANG Z C , SHEN H , LI J H . Current status of research on solar cells and materials[J]. Materials Review, 2000, 14 (8): 38- 40.
2
蒋荣华, 肖顺珍. 硅基太阳能电池与材料[J]. 新材料产业, 2003, (7): 8- 13.
2
JIANG R H , XIAO S Z . Silicon-based solar cells and materials[J]. New Materials Industry, 2003, (7): 8- 13.
3
STAEBLER D L , WROSKI C R . Reversible conductivity changes in discharge-produced amorphous silicon[J]. Appl Phys Lett, 1977, 31, 292- 294.
doi: 10.1063/1.89674
LIANG Z C , SHEN H , LI J H . Progress in studies on solar cells[J]. Energy Engineering, 2000, (4): 8- 11.
5
ZHANG S F , YANG X D , NUMATAY H , et al. Highly efficient dye-sensitized solar cells:progress and future challenges[J]. Energy & Environmental Science, 2013, 6, 1443- 1464.
6
ZHANG S F , YANG X D , QINC J , et al. Interfacial engineering for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2014, 2, 5167- 5177.
doi: 10.1039/c3ta14392a
7
KOJIMA A , TESHIMA K , SHIRAI Y , et al. Organometalhalide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051.
doi: 10.1021/ja809598r
8
IM J H , LEEC R , LEE J W , et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3 (10): 4088- 4093.
doi: 10.1039/c1nr10867k
9
CHUNG I , LEE B , HE J , et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485 (7399): 486- 489.
doi: 10.1038/nature11067
10
KIM H S , LEE C R , IM J H , et al. Lead iodide perovskitesensitized all-solid-state submicron thin film mesoscopicsolar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2 (591): 1- 7.
11
LEE M M , TEUSCHER J , MIYASAKA T , et al. Efficient hybrid solar cells based on meso-superstructured organometalhalide perovskites[J]. Science, 2012, 338 (6107): 643- 647.
doi: 10.1126/science.1228604
12
BURSCHKA J , PELLET N , MOON S-J , et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499, 316- 320.
doi: 10.1038/nature12340
13
XING G , MATHEWS N , SUN S , et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342 (6156): 345- 351.
14
STRANKS S D , EPERON G E , GRANCINI G , et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342 (6156): 341- 344.
doi: 10.1126/science.1243982
15
MARCHIORO A , TEUSCHER J , FRIEDRICH D , et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8, 250- 255.
doi: 10.1038/nphoton.2013.374
16
DUALEH A , MOEHL T , TETREAULT N , et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells[J]. ACS Nano, 2014, 8 (1): 362- 373.
doi: 10.1021/nn404323g
17
LINDBLAD R , BI D , PARK B , et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces[J]. Journal of Physical Chemistry Letters, 2014, 5 (4): 648- 653.
doi: 10.1021/jz402749f
18
EDIR E , KIRMAYER S , HENNING A , et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporouselectron transporting scaffold (but not necessarily a hole conductor)[J]. Nano Letters, 2014, 14 (2): 1000- 1004.
doi: 10.1021/nl404454h
19
JEON N J , NOH J H , YANG W S , et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517 (7535): 476- 480.
doi: 10.1038/nature14133
QIN S , WANG R C . Geometric descriptions of distorted structures of ABX3 type perovskite and application in structural prediction[J]. Acta Geologica Sinica, 2004, 78 (3): 345- 350.
21
BUTTNER R H , MASLEN E N . Electron difference density and vibration tensors in SrTiO3[J]. Acta Cryst, 1992, B48, 639- 644.
22
SASAKI S , PREWITT C T , BASS J D , et al. Orthorhombic perovskite CaTiO3 and CdTiO3:structure and space group[J]. Acta Cryst, 1987, C43, 1668- 1674.
23
REDFERN S A T . High-temperature structural phase transitions in perovskite (CaTiO3)[J]. Journal of Physics Condensed Matter, 1996, 8, 8267- 8275.
doi: 10.1088/0953-8984/8/43/019
24
GAO P , GRATZEL M , NAZEERUDDINM K . Organohalide lead perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7 (8): 2448- 2463.
25
MEI A Y , LI X , LIU L F , et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345 (6194): 295- 298.
doi: 10.1126/science.1254763
26
ZHOU H P , CHEN Q , LI G , et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345 (6196): 542- 546.
doi: 10.1126/science.1254050
27
LIANG K , MITZI D B , PRIKAS M T . Synthesis and characterization of organic inorganic perovskite thin films prepared using a versatile two-step dipping technique[J]. Journal of Materials Chemistry, 1998, 10 (1): 403- 411.
doi: 10.1021/cm970568f
28
SHI J , DONG J , LV S , et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells:high efficiency and junction property[J]. Applied Physics Letters, 2014, 104 (6): 901- 904.
29
PELLET N , GAO P , GREGORI G , et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting[J]. Angewandte Chemie International Edition, 2014, 53 (12): 3151- 3157.
doi: 10.1002/anie.201309361
30
LIU D , KELLY T L . Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2013, 8, 133- 138.
31
LEE J W , SEOL D J , CHO A N , et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Advanced Materials, 2014, 26 (29): 4991- 4998.
doi: 10.1002/adma.201401137
32
WU Y , ISLAMA A , YANG X , et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7 (9): 2934- 2938.
33
SALAU A M . Fundamental absorption edge in PbI2:KI alloys[J]. Solar Energy Materials, 1980, 2 (3): 327- 332.
doi: 10.1016/0165-1633(80)90008-8
34
MITZI D B , PRIKAS M T , CHONDROUDIS K . Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique[J]. Chemistry of Materials, 1999, 11 (3): 542- 544.
doi: 10.1021/cm9811139
35
LIU M , JOHNSTON M B , SNAITH H J . Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501 (7467): 395- 398.
doi: 10.1038/nature12509
36
MALINKIEWICZ O , YELLA A , YONG H L , et al. Perovskite solar cells employing organic charge-transport layers[J]. Nature Photonics, 2013, 8, 128- 132.
37
CHEN Q , ZHOU H , HONG Z , et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2014, 136 (2): 622- 625.
doi: 10.1021/ja411509g
YUE H D , PAN L F , XU D Y . Evaporation and flow in the dye coating process[J]. Journal of Tsinghua University(Science and Technology), 2004, 44, 174- 177.
doi: 10.3321/j.issn:1000-0054.2004.02.011
39
XIAO M , HUANG F , HUANG W , et al. A fast deposition-crystallization procedure for highly efficient leadiodide perovskite thin-film solar cells[J]. Angewandte Chemie, 2014, 53 (37): 9898- 9903.
doi: 10.1002/anie.201405334
40
JEONN J , NOHJ H , KIMY C , et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13 (9): 897- 903.
doi: 10.1038/nmat4014
41
HUANG F , DKHISSIB Y , HUANG W , et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells[J]. Nano Energy, 2014, 10, 10- 18.
doi: 10.1016/j.nanoen.2014.08.015
42
NOH J H , IM S H , HEO J H , et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13 (4): 1764- 1769.
doi: 10.1021/nl400349b
43
KOHT M , FU K , FANG Y , et al. Formamidinium-containing metal-halide:an alternative material for near-IR absorption perovskite solar cells[J]. Journal of Physical Chemistry C, 2013, 118 (30): 16458- 16462.
44
EPERONG E , STRANKSS D , MENELAOUC , et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7 (3): 982- 988.
45
PROTESESCU L , YAKUNIN S , BODNARCHUK M L , et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15 (6): 3692- 3696.
doi: 10.1021/nl5048779
46
HAO F , STOUMPOS C C , CHANG R P H , et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136 (2): 8094- 8099.
47
OGOMIY H , MORITA A , TSUKAMOTO S , et al. CH3NH3SnxPb(1-x)I3perovskitesolar cells covering up to 1060 nm[J]. Journal of Physical Chemist Letters, 2014, 5 (6): 1004- 1011.
doi: 10.1021/jz5002117
48
ZUO F , WILLIAMSS T , LIANGP W , et al. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2014, 26 (37): 6454- 6460.
doi: 10.1002/adma.201401641
49
NOEL N K , STRANKS S D , ABATE A , et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7 (9): 3061- 3068.
50
STOUMPOS C C , FRAZER L , CLARK D J , et al. Cheminform abstract:hybrid germanium iodide perovskite semiconductors:active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137 (21): 6804- 6819.
doi: 10.1021/jacs.5b01025
51
CORTECCHIA D , DEWI H A , YIN J , et al. Lead-free MA2CuClxBr4-x hybrid perovskites[J]. Inorganic Chemistry, 2016, 55 (3): 1044- 1052.
doi: 10.1021/acs.inorgchem.5b01896
52
HEO J H , SONGD H , IM S H . Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process[J]. Advanced Materials, 2014, 26 (48): 8179- 8183.
doi: 10.1002/adma.201403140
53
SADHANALA A , DESCHLER F , THOMAS T H , et al. Preparation of single-phase films of CH3NH3Pb(I1-xBrx)3 with sharpoptical band edges[J]. The Journal of Physical Chemistry Letters, 2014, 5 (15): 2501- 2505.
doi: 10.1021/jz501332v