Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 142-150    DOI: 10.11868/j.issn.1001-4381.2015.001329
  综述 本期目录 | 过刊浏览 | 高级检索 |
钙钛矿太阳能电池材料的研究进展
邱婷, 苗晓亮, 宋文佳, 楼冬, 张树芳()
南京理工大学 材料科学与工程学院, 南京 210094
Research Progress on Materials for Perovskites Solar Cells
Ting QIU, Xiao-liang MIAO, Wen-jia SONG, Dong LOU, Shu-fang ZHANG()
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
全文: PDF(3160 KB)   HTML ( 80 )  
输出: BibTeX | EndNote (RIS)      
摘要 

钙钛矿太阳能电池的研究在近5年内迅速发展,已经成为非常有活力的研究领域,在较短的时间内电池的效率得到了显著的提升。钙钛矿太阳能电池中钙钛矿材料的研究对于提高电池的效率有着重要的意义。本文综述了近年来在钙钛矿层制备方法、新材料的合成等方面存在的主要问题和研究进展。对各种制备方法的特点及改进优化进行了详细的介绍,并分析了新材料合成的必要性和所面临的问题。最后,指出了在降低钙钛矿毒性、大面积制备钙钛矿太阳能电池,以及降低成本等方面的研究前景,为今后高效、稳定的钙钛矿太阳能电池的研究提供方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱婷
苗晓亮
宋文佳
楼冬
张树芳
关键词 钙钛矿太阳能电池制备薄膜    
Abstract

Perovskite solar cells(PSCs) have been developed rapidly as one of the most remarkably growing photovoltaic technologies in the last five years. The power conversion efficiency(PCE) of the solar cells has been unprecedentedly increased over the relatively short period. It is of great significance to study the perovskite materials in this kind of solar cells for improving the efficiency. The most focused issues as well as the main progress in varied fabrication techniques and synthesis of new materials in recent years were reviewed in this paper. The characteristics and improvements of varied fabrication techniques are introduced in detail, the necessity and the problems facing for new materials synthesis were analyzed. Finally, a perspective view on reducing the toxicity of perovskite, preparing large-scale perovskite solar cells, and the cost reduction was given to provide the direction for the future research of high-efficiency and stable perovskite solar cells.

Key wordsperovskite    solar cell    fabrication    thin film
收稿日期: 2015-10-29      出版日期: 2018-03-20
中图分类号:  O475  
基金资助:国家自然科学基金青年科学基金资助(21403112);中央高校基本科研业务费专项资金资助(3091501333)
通讯作者: 张树芳     E-mail: zhangshufang@njust.edu.cn
作者简介: 张树芳(1979-), 女, 副教授, 博士, 研究方向:新型太阳能电池材料及机理研究, 联系地址:南京市玄武区孝陵卫200号南京理工大学材料科学与工程学院(210094), E-mail:zhangshufang@njust.edu.cn
引用本文:   
邱婷, 苗晓亮, 宋文佳, 楼冬, 张树芳. 钙钛矿太阳能电池材料的研究进展[J]. 材料工程, 2018, 46(3): 142-150.
Ting QIU, Xiao-liang MIAO, Wen-jia SONG, Dong LOU, Shu-fang ZHANG. Research Progress on Materials for Perovskites Solar Cells. Journal of Materials Engineering, 2018, 46(3): 142-150.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001329      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/142
Fig.1  钙钛矿太阳能电池的结构示意图
Fig.2  钙钛矿CH3NH3PbX3结构单元示意图[7]
Fig.3  制备光敏层的4种常见方法[24]
(a)一步法; (b)两步法; (c)气相法; (d)气相辅助液相法
Fig.4  快速结晶沉积法(1)与传统方法(2)制得的钙钛矿层形貌和结构对比[39]
(a),(b)SEM图;(c)TEM图;(d)XRD谱图
Fig.5  反溶剂法制备均匀致密的钙钛矿薄膜[40]
Fig.6  FAPbI3(a)以及FAPbI3/MAPbI3(b)薄膜表面SEM图像[31]
1 梁宗存, 沈辉, 李戬洪. 太阳能电池及材料研究[J]. 材料导报, 2000, 14 (8): 38- 40.
1 LIANG Z C , SHEN H , LI J H . Current status of research on solar cells and materials[J]. Materials Review, 2000, 14 (8): 38- 40.
2 蒋荣华, 肖顺珍. 硅基太阳能电池与材料[J]. 新材料产业, 2003, (7): 8- 13.
2 JIANG R H , XIAO S Z . Silicon-based solar cells and materials[J]. New Materials Industry, 2003, (7): 8- 13.
3 STAEBLER D L , WROSKI C R . Reversible conductivity changes in discharge-produced amorphous silicon[J]. Appl Phys Lett, 1977, 31, 292- 294.
doi: 10.1063/1.89674
4 梁宗存, 沈辉, 李戬洪. 太阳能电池研究进展[J]. 能源工程, 2000, (4): 8- 11.
4 LIANG Z C , SHEN H , LI J H . Progress in studies on solar cells[J]. Energy Engineering, 2000, (4): 8- 11.
5 ZHANG S F , YANG X D , NUMATAY H , et al. Highly efficient dye-sensitized solar cells:progress and future challenges[J]. Energy & Environmental Science, 2013, 6, 1443- 1464.
6 ZHANG S F , YANG X D , QINC J , et al. Interfacial engineering for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2014, 2, 5167- 5177.
doi: 10.1039/c3ta14392a
7 KOJIMA A , TESHIMA K , SHIRAI Y , et al. Organometalhalide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051.
doi: 10.1021/ja809598r
8 IM J H , LEEC R , LEE J W , et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3 (10): 4088- 4093.
doi: 10.1039/c1nr10867k
9 CHUNG I , LEE B , HE J , et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485 (7399): 486- 489.
doi: 10.1038/nature11067
10 KIM H S , LEE C R , IM J H , et al. Lead iodide perovskitesensitized all-solid-state submicron thin film mesoscopicsolar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2 (591): 1- 7.
11 LEE M M , TEUSCHER J , MIYASAKA T , et al. Efficient hybrid solar cells based on meso-superstructured organometalhalide perovskites[J]. Science, 2012, 338 (6107): 643- 647.
doi: 10.1126/science.1228604
12 BURSCHKA J , PELLET N , MOON S-J , et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499, 316- 320.
doi: 10.1038/nature12340
13 XING G , MATHEWS N , SUN S , et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342 (6156): 345- 351.
14 STRANKS S D , EPERON G E , GRANCINI G , et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342 (6156): 341- 344.
doi: 10.1126/science.1243982
15 MARCHIORO A , TEUSCHER J , FRIEDRICH D , et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8, 250- 255.
doi: 10.1038/nphoton.2013.374
16 DUALEH A , MOEHL T , TETREAULT N , et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells[J]. ACS Nano, 2014, 8 (1): 362- 373.
doi: 10.1021/nn404323g
17 LINDBLAD R , BI D , PARK B , et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces[J]. Journal of Physical Chemistry Letters, 2014, 5 (4): 648- 653.
doi: 10.1021/jz402749f
18 EDIR E , KIRMAYER S , HENNING A , et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporouselectron transporting scaffold (but not necessarily a hole conductor)[J]. Nano Letters, 2014, 14 (2): 1000- 1004.
doi: 10.1021/nl404454h
19 JEON N J , NOH J H , YANG W S , et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517 (7535): 476- 480.
doi: 10.1038/nature14133
20 秦善, 王汝成. 钙钛矿(ABX3)型结构畸变的几何描述及其应用[J]. 地质学报, 2004, 78 (3): 345- 350.
20 QIN S , WANG R C . Geometric descriptions of distorted structures of ABX3 type perovskite and application in structural prediction[J]. Acta Geologica Sinica, 2004, 78 (3): 345- 350.
21 BUTTNER R H , MASLEN E N . Electron difference density and vibration tensors in SrTiO3[J]. Acta Cryst, 1992, B48, 639- 644.
22 SASAKI S , PREWITT C T , BASS J D , et al. Orthorhombic perovskite CaTiO3 and CdTiO3:structure and space group[J]. Acta Cryst, 1987, C43, 1668- 1674.
23 REDFERN S A T . High-temperature structural phase transitions in perovskite (CaTiO3)[J]. Journal of Physics Condensed Matter, 1996, 8, 8267- 8275.
doi: 10.1088/0953-8984/8/43/019
24 GAO P , GRATZEL M , NAZEERUDDINM K . Organohalide lead perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7 (8): 2448- 2463.
25 MEI A Y , LI X , LIU L F , et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345 (6194): 295- 298.
doi: 10.1126/science.1254763
26 ZHOU H P , CHEN Q , LI G , et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345 (6196): 542- 546.
doi: 10.1126/science.1254050
27 LIANG K , MITZI D B , PRIKAS M T . Synthesis and characterization of organic inorganic perovskite thin films prepared using a versatile two-step dipping technique[J]. Journal of Materials Chemistry, 1998, 10 (1): 403- 411.
doi: 10.1021/cm970568f
28 SHI J , DONG J , LV S , et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells:high efficiency and junction property[J]. Applied Physics Letters, 2014, 104 (6): 901- 904.
29 PELLET N , GAO P , GREGORI G , et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting[J]. Angewandte Chemie International Edition, 2014, 53 (12): 3151- 3157.
doi: 10.1002/anie.201309361
30 LIU D , KELLY T L . Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2013, 8, 133- 138.
31 LEE J W , SEOL D J , CHO A N , et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Advanced Materials, 2014, 26 (29): 4991- 4998.
doi: 10.1002/adma.201401137
32 WU Y , ISLAMA A , YANG X , et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7 (9): 2934- 2938.
33 SALAU A M . Fundamental absorption edge in PbI2:KI alloys[J]. Solar Energy Materials, 1980, 2 (3): 327- 332.
doi: 10.1016/0165-1633(80)90008-8
34 MITZI D B , PRIKAS M T , CHONDROUDIS K . Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique[J]. Chemistry of Materials, 1999, 11 (3): 542- 544.
doi: 10.1021/cm9811139
35 LIU M , JOHNSTON M B , SNAITH H J . Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501 (7467): 395- 398.
doi: 10.1038/nature12509
36 MALINKIEWICZ O , YELLA A , YONG H L , et al. Perovskite solar cells employing organic charge-transport layers[J]. Nature Photonics, 2013, 8, 128- 132.
37 CHEN Q , ZHOU H , HONG Z , et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2014, 136 (2): 622- 625.
doi: 10.1021/ja411509g
38 岳宏达, 潘龙法, 徐端颐. 染料旋涂工艺中的挥发和流动[J]. 清华大学学报(自然科学版), 2004, 44, 174- 177.
doi: 10.3321/j.issn:1000-0054.2004.02.011
38 YUE H D , PAN L F , XU D Y . Evaporation and flow in the dye coating process[J]. Journal of Tsinghua University(Science and Technology), 2004, 44, 174- 177.
doi: 10.3321/j.issn:1000-0054.2004.02.011
39 XIAO M , HUANG F , HUANG W , et al. A fast deposition-crystallization procedure for highly efficient leadiodide perovskite thin-film solar cells[J]. Angewandte Chemie, 2014, 53 (37): 9898- 9903.
doi: 10.1002/anie.201405334
40 JEONN J , NOHJ H , KIMY C , et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13 (9): 897- 903.
doi: 10.1038/nmat4014
41 HUANG F , DKHISSIB Y , HUANG W , et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells[J]. Nano Energy, 2014, 10, 10- 18.
doi: 10.1016/j.nanoen.2014.08.015
42 NOH J H , IM S H , HEO J H , et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13 (4): 1764- 1769.
doi: 10.1021/nl400349b
43 KOHT M , FU K , FANG Y , et al. Formamidinium-containing metal-halide:an alternative material for near-IR absorption perovskite solar cells[J]. Journal of Physical Chemistry C, 2013, 118 (30): 16458- 16462.
44 EPERONG E , STRANKSS D , MENELAOUC , et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7 (3): 982- 988.
45 PROTESESCU L , YAKUNIN S , BODNARCHUK M L , et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15 (6): 3692- 3696.
doi: 10.1021/nl5048779
46 HAO F , STOUMPOS C C , CHANG R P H , et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136 (2): 8094- 8099.
47 OGOMIY H , MORITA A , TSUKAMOTO S , et al. CH3NH3SnxPb(1-x)I3perovskitesolar cells covering up to 1060 nm[J]. Journal of Physical Chemist Letters, 2014, 5 (6): 1004- 1011.
doi: 10.1021/jz5002117
48 ZUO F , WILLIAMSS T , LIANGP W , et al. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2014, 26 (37): 6454- 6460.
doi: 10.1002/adma.201401641
49 NOEL N K , STRANKS S D , ABATE A , et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7 (9): 3061- 3068.
50 STOUMPOS C C , FRAZER L , CLARK D J , et al. Cheminform abstract:hybrid germanium iodide perovskite semiconductors:active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137 (21): 6804- 6819.
doi: 10.1021/jacs.5b01025
51 CORTECCHIA D , DEWI H A , YIN J , et al. Lead-free MA2CuClxBr4-x hybrid perovskites[J]. Inorganic Chemistry, 2016, 55 (3): 1044- 1052.
doi: 10.1021/acs.inorgchem.5b01896
52 HEO J H , SONGD H , IM S H . Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process[J]. Advanced Materials, 2014, 26 (48): 8179- 8183.
doi: 10.1002/adma.201403140
53 SADHANALA A , DESCHLER F , THOMAS T H , et al. Preparation of single-phase films of CH3NH3Pb(I1-xBrx)3 with sharpoptical band edges[J]. The Journal of Physical Chemistry Letters, 2014, 5 (15): 2501- 2505.
doi: 10.1021/jz501332v
[1] 陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
[2] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[3] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[4] 黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
[5] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[6] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[7] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[8] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[9] 张少威, 蒲秀好, 万艳红, 祝康, 夏长荣. 掺杂对Sr2Fe1.5Mo0.5O6-δ阳极材料电化学性能影响研究进展[J]. 材料工程, 2021, 49(9): 1-13.
[10] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[11] 李红, 韩祎, 曹健, MARIUSZBober, JACEKSenkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[12] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[13] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[14] 李岳, 李炯利, 朱巧思, 梁佳丰, 郭建强, 王旭东. 石墨烯导热材料研究进展[J]. 材料工程, 2021, 49(11): 1-13.
[15] 李天, 支丹丹, 郭子浩, 郭玮琳, 张美玲, 孟凡彬. 石墨烯基气凝胶微球的研究进展[J]. 材料工程, 2021, 49(11): 14-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn