Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (8): 76-82    DOI: 10.11868/j.issn.1001-4381.2015.001382
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5083铝合金热压缩流变应力曲线修正与本构方程
付平1,2, 刘栩2, 戴青松2,3, 张佳琪1, 邓运来1,3,*()
1 中南大学 轻合金研究院, 长沙 410083
2 广西柳州银海铝业股份有限公司, 广西 柳州 545062
3 中南大学 材料科学与工程学院, 长沙 410083
Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy
Ping FU1,2, Xu LIU2, Qing-song DAI2,3, Jia-qi ZHANG1, Yun-lai DENG1,3,*()
1 Light Alloy Research Institute, Central South University, Changsha 410083, China
2 Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou 545062, Guangxi, China
3 School of Materials Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(1167 KB)   HTML ( 45 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在Gleeble-3800热模拟机上采用等温压缩实验研究5083铝合金在变形温度为523~723K、应变速率为0.01~10s-1、真应变为0~0.7条件下的高温流变应力行为。基于热传导对合金变形热效应的影响,对流变应力曲线进行了变形热修正。结果表明:热传导对变形过程中产生的温升影响不可忽略,其影响随着真应变的增加而更加显著;修正后的流变应力对峰值应力影响不大,但稳态流变应力软化趋势得到一定程度的减弱。建立了Zener-Hollomon参数的本构方程,可对5083铝合金在不同变形条件下的流变应力进行预测,温升修正后的流变应力值与本构方程的预测值吻合较好,平均相对误差仅为5.21%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付平
刘栩
戴青松
张佳琪
邓运来
关键词 5083铝合金热压缩流变应力温升本构方程    
Abstract

The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K, strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.

Key words5083 aluminum alloy    hot compression    flow stress    temperature rise    constitutive equation
收稿日期: 2015-11-11      出版日期: 2017-08-10
中图分类号:  TG146.2+1  
基金资助:广西科学研究与技术开发计划课题(桂科重1598001-2)
通讯作者: 邓运来     E-mail: luckdeng@csu.edu.cn
作者简介: 邓运来(1969-), 男, 教授, 博士生导师, 从事有色金属材料加工工程, 联系地址:湖南省长沙市岳麓区中南大学本部特冶楼(410083), E-mail:luckdeng@csu.edu.cn
引用本文:   
付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
Ping FU, Xu LIU, Qing-song DAI, Jia-qi ZHANG, Yun-lai DENG. Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(8): 76-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001382      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/76
Fe Si Mg Mn Zn Cr Ti Al
0.29 0.11 4.65 0.49 0.03 0.10 0.03 Bal
Table 1  5083铝合金化学成分(质量分数/%)
Fig.1  5083铝合金不同变形条件下的真应力-真应变曲线
(a)=0.01s-1; (b)=0.1s-1; (c)=1s-1; (d)=10s-1
Fig.2  预设温度为623K时不同应变速率条件下5083铝合金的瞬时温度
Fig.3  5083铝合金在不同变形条件下真应力-真应变曲线修正前后的对比
(a)=1s-1; (b)=10s-1
ε α n Q/(kJ·mol-1) lnA
0.1 0.009088 6.2783 146.898 25.222
0.2 0.008852 6.5011 156.392 27.129
0.3 0.008756 6.6867 153.917 26.783
0.4 0.008895 7.0697 166.060 29.982
0.5 0.009122 7.2140 171.895 29.982
0.6 0.009221 7.3352 175.906 30.723
Table 2  5083铝合金的参数值
Fig.4  不同应变条件下Z参数与5083铝合金流变应力的关系(a)ε=0.1;(b)ε=0.6
Fig.5  5083铝合金参数α(a),n(b),Q(c),A(d)值与ε的关系
Fig.6  5083铝合金修正流变应力值与计算值的对比
1 齐国栋, 杨鑫, 师雪飞, 等. 退火制度对冷轧和温轧的5083铝合金组织性能的影响[J]. 轻金属, 2010, (9): 70- 72.
1 QI G D , YANG X , SHI X F , et al. The effect of deformation mode on the structure and property of annealed 5083 aluminum alloy[J]. Light Metals, 2010, (9): 70- 72.
2 LIN S P , NIE Z R , HUANG H , et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Materials & Design, 2010, 31 (3): 1607- 1612.
3 LEE Y B , DONG H S , PARK K T , et al. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scripta Materialia, 2004, 51 (4): 355- 359.
doi: 10.1016/j.scriptamat.2004.02.037
4 徐清波, 陶友瑞, 米芳. 5083铝合金高温流变本构关系研究[J]. 矿冶工程, 2013, 33 (5): 124- 126.
4 XU Q B , TAO Y R , MI F . Constitutive equation of rheological properties for 5083 aluminum alloy at elevated temperature[J]. Mining and Metallurgy Engineering, 2013, 33 (5): 124- 126.
5 吴文祥, 孙德勤, 曹春艳, 等. 5083铝合金热压缩变形流变应力行为[J]. 中国有色金属学报, 2007, 17 (10): 1667- 1671.
doi: 10.3321/j.issn:1004-0609.2007.10.019
5 WU W X , SUN D Q , CAO C Y , et al. Flow stress behavior of 5083 aluminum alloy under hot compression deformation[J]. The Chinese Journal of Nonferrous Metals, 2007, 17 (10): 1667- 1671.
doi: 10.3321/j.issn:1004-0609.2007.10.019
6 夏祥生, 张帷, 王长朋, 等. 稀土镁合金热压缩流变应力修正及热变形行为[J]. 精密成形工程, 2013, 5 (4): 1- 6.
6 XIA X S , ZHANG W , WANG C P , et al. Correction of hot compression flow stress and hot deformation behavior of rare earth magnesium alloy[J]. Journal of Netshape Forming Engineering, 2013, 5 (4): 1- 6.
7 肖罡, 李落星, 叶拓. 6013铝合金平面热压缩流变应力曲线修正与本构方程[J]. 中国有色金属学报, 2014, 24 (5): 1268- 1274.
7 XIAO G , LI L X , YE T . Modification of flow stress curves and constitutive equations during hot plane compression deformation of 6013 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (5): 1268- 1274.
8 魏伟. 2198铝锂合金变形行为本构关系研究[D]. 沈阳: 沈阳航空航天大学, 2012.
8 WEI W. Research on constitutive relationship and deformation behavior of 2198 aluminum alloy[D]. Shenyang:Shenyang Aerospace University, 2012.
9 SHEN J , XIE S S . Dynamic recovery and dynamic recrystallization of 7005 aluminum alloy during hot compression[J]. Acta Metallurgica Sinica, 2000, 13 (1): 379- 386.
10 刘文义. 7085铝合金热加工力学行为及微观组织演变规律研究[D]. 重庆: 重庆大学, 2014.
10 LIU W Y. Research on mechanical property and microstructure evolution in hot working of 7085 aluminum alloy[D]. Chongqing:Chongqing University, 2014.
11 LI L , ZHOU J , DUSZCZYK J . Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172 (3): 372- 380.
doi: 10.1016/j.jmatprotec.2005.09.021
12 GOELZ R L , SEMIATIN S L . The adiabatic correction factor for deformation beating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10 (6): 710- 717.
doi: 10.1361/105994901770344593
13 DEVADAS C , BARAGAR D , RUDDLE G , et al. The thermal and metallurgical state of steel strip during hot rolling. Part Ⅱ:factors influencing rolling loads[J]. Metallurgical and Materials Transactions A, 1991, 22 (2): 321- 333.
doi: 10.1007/BF02656801
14 谭丽琴, 王高潮, 甘雯晴, 等. 基于应变速率循环法的TA15钛合金超塑性本构方程[J]. 航空材料学报, 2014, 34 (6): 21- 27.
doi: 10.11868/j.issn.1005-5053.2014.6.002
14 TAN L Q , WANG G C , GAN W Q , et al. Superplastic constitutive relationship of TA15 titanium alloy based on strain rate circulation method[J]. Journal of Aeronautical Materials, 2014, 34 (6): 21- 27.
doi: 10.11868/j.issn.1005-5053.2014.6.002
15 李成侣, 潘清林, 刘晓艳, 等. 2124铝合金的热压缩变形和加工图[J]. 材料工程, 2010, (4): 10- 14.
15 LI C L , PAN Q L , LIU X Y , et al. Hot compression deformation and processing maps of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2010, (4): 10- 14.
[1] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[2] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[3] 赵家祥, 李建, 梁志鸿, 邱博, 阚前华. 超弹性NiTi合金率相关相变图案演化模拟[J]. 材料工程, 2021, 49(4): 102-110.
[4] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[5] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[6] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[7] 周亚利, 杨秋月, 张文玮, 刘田文, 何威, 吴珍, 伍铭, 谭元标. 具有层片状α相组织的TB8钛合金热变形行为及本构方程[J]. 材料工程, 2021, 49(1): 75-81.
[8] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[9] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
[10] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[11] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[12] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[13] 梁志鸿, 李建, 阚前华, 康国政. 形状记忆聚氨酯热力耦合变形行为实验和有限元模拟[J]. 材料工程, 2019, 47(10): 133-140.
[14] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[15] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn