Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 45-51    DOI: 10.11868/j.issn.1001-4381.2015.001412
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Cu-CF/EP复合材料导电与阻尼性能研究
赵雄伟1, 臧充光1, 焦清介1, 马庆坤2
1 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081;
2 中国兵器工业豫西工业集团有限公司研发中心, 河南 南阳 473000
Conductivity and Damping Properties of Copper Coated CF/EP Composite
ZHAO Xiong-wei1, ZANG Chong-guang1, JIAO Qing-jie1, MA Qing-kun2
1 State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2 Research Center of Yuxi Industries Group, Norinco Group, Nanyang 473000, Henan, China
全文: PDF(2865 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究不同长径比的碳纤维(CF)对环氧树脂阻尼性能的影响,从结构设计上对CF镀铜处理,采用SEM对镀铜CF(Cu-CF)进行验证,并研究Cu-CF/EP复合材料的力学、导电以及阻尼性能。结果表明:CF表面镀铜均匀;加入较少量大长径比CF能很好地提高复合材料的冲击强度,但是弯曲强度却明显降低,而加入较多的小长径比CF对材料的力学性能有所增强。此外CF-P3200能很好地提高复合材料的导电性能和阻尼性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵雄伟
臧充光
焦清介
马庆坤
关键词 碳纤维阻尼性能导电性能复合材料    
Abstract:The effect of different length-diameter ratios of carbon fibers (CF) on damping property of CF/EP composites was investigated. The CF was coated with copper structurally and the copper coated CF (Cu-CF) was verified by SEM. The mechanical,electrical and damping properties of composites were studied. The results show that the copper plating is coated on the surface of CF uniformly; the addition of a little large length-diameter ratio CF can enhance the impact strength of CF/EP composites effectively, while the bending strength decreases; the addition of more small length-diameter ratio CF can also improve the mechanical properties of the composites. In addition, the large length-diameter ratio CF can heighten the conductivity and damping property of composites easily.
Key wordscarbon fiber    damping property    electrical conductivity    composite
收稿日期: 2015-11-18      出版日期: 2017-09-16
中图分类号:  TB332  
通讯作者: 臧充光(1965-),女,副教授,从事特种能源防护材料研究工作,联系地址:北京市海淀区中关村南大街5号北京理工大学爆炸科学与技术国家重点实验室(100081),E-mail:zangchongguang@bit.edu.cn.     E-mail: zangchongguang@bit.edu.cn
引用本文:   
赵雄伟, 臧充光, 焦清介, 马庆坤. Cu-CF/EP复合材料导电与阻尼性能研究[J]. 材料工程, 2017, 45(9): 45-51.
ZHAO Xiong-wei, ZANG Chong-guang, JIAO Qing-jie, MA Qing-kun. Conductivity and Damping Properties of Copper Coated CF/EP Composite. Journal of Materials Engineering, 2017, 45(9): 45-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001412      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/45
[1] 倪楠楠, 温月芳, 贺德龙,等. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6):90-101. NI N N, WEN Y F, HE D L,et al. Process on the research of structure-damping composites[J]. Journal of Materials Engineering, 2015, 43(6):90-101.
[2] 赵云峰, 游少雄. 结构/阻尼一体化复合材料技术及其应用研究进展[J]. 材料工程, 2012(11):86-91. ZHAO Y F, YOU S X. Review on the structure/damping cocured composite materials and their applications[J]. Journal of Materials Engineering, 2012(11):86-91.
[3] UNGER E E. Noise and vibration control[M]. New York:Mc Graw Hill Book Company, 1979:23-34.
[4] 王海侨, 姜志国, 黄丽, 等. 阻尼材料研究进展[J]. 高分子通报, 2006(3):24-30. WANG H Q, JIANG Z G, HUANG L, et al. Development of damping materials[J]. Polymer Bulletin, 2006(3):24-30.
[5] DUTRA C L, SOARES B G, CAMPOS E A, et al. Composite materials constituted by a modified polypropylene fiber and epoxy resin[J]. Journal of Applied Polymer Science, 1999, 73(1):69-73.
[6] 刘建英, 徐平, 于英华. 泡沫铝复合材料的制备及其阻尼性能[J]. 煤矿机械, 2004(5):33-35. LIU J Y, XU P, YU Y H. Manufacturing and damping properties of the composite material of foam aluminum[J]. Coal Mine Machinery, 2004(5):33-35.
[7] 李晓静. 泡沫铝纳米环氧树脂新型复合材料设计[J]. 机械工程师, 2003(10):55-57. LI X J. Foam aluminum/nanoepoxy integration of function and structure new type nanocomposites's designing and predicting its property[J]. Mechanical Engineer, 2003(10):55-57.
[8] TANTAWY F E, SUNG Y K. A novel ultrasonic transducer backing from porous epoxy resin-titanium-silane coupling agentand plasticizer composites[J]. Materials Letters, 2003, 58:154-158.
[9] 张文, 陈长勇, 金增平, 等. 氧化锌晶须/环氧树脂复合材料减振性能[J]. 青岛化工学院学报, 1998, 19(4):361-364. ZHANG W, CHEN C Y, JIN Z P, et al. Vibration decrease of ZnOw/epoxy resin composite[J]. Journal of Qingdao Institute of Chemical Technology, 1998, 19(4):361-364.
[10] SUHR J, KORATKAR N A, YE D, et al. Damping properties of epoxy films with nanoscale fillers[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(3):255-260.
[11] ZANG C G, ZHU X D, JIAO Q J. Enhanced mechanical and electrical properties of nylon-6 composites by using carbon fiber/graphene multiscale structure as additive[J]. Journal of Applied Polymer Science, 2014, 132(19):6230-6240.
[12] HAN J H, ZHANG H, CHEN M J, et al. The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates[J]. Carbon, 2015, 94:101-113.
[13] RAHMANI H, NAJAFI S H M, ASHORI A. Mechanical performance of epoxy/carbon fiber laminated composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(8):733-740.
[14] TSOTRA P, FRIEDRICH K. Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites[J]. Composites:Part A, 2003, 34:75-82.
[15] HU N, ITOI T, AKAGI T, et al. Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites[J]. Carbon, 2013, 51:202-212.
[16] LI W W, LIU L, SHEN B. Effect of Ni-coated short carbon fibers on the mechanical and electrical properties of epoxy composites[J]. Fibers and Polymers, 2013, 14(9):1515-1520.
[17] CHE D, YAO G, CAO Z. A precious metal-free electroless technique for the deposition of copper on carbon fibers[J]. Metallurgical and Materials Transactions A, 2012, 43:4194-4199.
[18] YU S, PARK B I, PARK C, et al. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites[J]. ACS Applied Materials and Interfaces, 2014, 6(10):7498-7503.
[19] LI J P, QI S H, ZHANG M Y, et al. Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy[J]. Journal of Applied Polymer Science, 2015, doi:10.1002/app.42306.
[20] WANG R, YANG H, WANG J L, et al. The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber[J]. Polymer Testing, 2014, 38(9):53-56.
[21] 朱明明, 李卫. 镀Cu短碳纤维增强Cu基复合材料的性能[J]. 特种铸造及有色合金, 2013,33(5):462-465. ZHU M M, LI W. Electroless plating copper short carbon fiber reinforced copper based composites[J]. Special Casting and Nonferrous Alloys, 2013, 33(5):462-465.
[1] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[2] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[3] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[4] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[5] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[10] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[11] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[12] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[13] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[14] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[15] 刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn