Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 117-123    DOI: 10.11868/j.issn.1001-4381.2015.001435
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CFRP筋拉伸强度预测模型评价及应用
王彬, 杨勇新, 岳清瑞, 曾滨
中冶建筑研究总院有限公司, 北京 100088
Evaluation and Application of Tensile Strength Prediction for CFRP Bars
WANG Bin, YANG Yong-xin, YUE Qing-rui, ZENG Bin
Central Research Institute of Building and Construction Co., Ltd., Beijing 100088, China
全文: PDF(870 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在初步建立CFRP筋拉伸强度预测模型基础上,对该模型典型因子影响材料强度权重进行研究评价,根据结果提出CFRP筋制备过程中强度补偿机制。结果表明:典型因子碳纤维拉伸强度(σf)和体积分数(Vf)对CFRP筋拉伸强度影响最为显著(影响率为39.1%~46.7%和43.5%~52.6%),是决定CFRP筋拉伸性能的最重要因素。公称直径(D)对CFRP筋拉伸强度存在一定程度影响(影响率7.1%~15.4%)。基体树脂强度(σm)对CFRP筋拉伸强度影响不明显(影响率0.3%~1.0%),相比其他三种因素,可近似忽略。依据预测模型典型因子强度补偿规律,可较方便推测CFRP筋组分碳纤维强度及体积分数参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彬
杨勇新
岳清瑞
曾滨
关键词 CFRP筋拉伸强度预测评价    
Abstract:Based on the prediction formula of tensile strength for CFRP bars, weight of influence of the typical factors on material strength was evaluated, and the mechanism of intensity compensation in the process of preparing CFRP bar was proposed. The results show that the effect of typical factors of carbon fiber tensile strength and volume fraction effect on the tensile strength of CFRP bars is most significant (influence rate:39.1%-46.7% and 43.5-52.6%). They are the most important factors that determine the tensile properties of CFRP bars. Nominal diameter has a certain effect on the tensile strength of CFRP bars (influence rate:7.1%-15.4%). Influence of resin matrix strength on the tensile strength of the CFRP bar is not obvious (influence rate:0.3%-1.0%). Compared to the other three factors, the influence of the tensile strength of resin can be nearly neglected. According to the intensity compensation rule of the typical factors, the strength and volume fraction of carbon fiber in CFRP bars can be easily inferred.
Key wordsCFRP bars    tensile strength    prediction    evaluation
收稿日期: 2015-11-24      出版日期: 2017-10-18
中图分类号:  TQ327.3  
通讯作者: 王彬(1984-),女,工程师,博士,主要从事高性能纤维增强复合材料方向研究,联系地址:北京市海淀区西土城路33号中冶建筑研究总院有限公司2#504检测中心研发部(100088),E-mail:mccwangbin@126.com     E-mail: mccwangbin@126.com
引用本文:   
王彬, 杨勇新, 岳清瑞, 曾滨. CFRP筋拉伸强度预测模型评价及应用[J]. 材料工程, 2017, 45(10): 117-123.
WANG Bin, YANG Yong-xin, YUE Qing-rui, ZENG Bin. Evaluation and Application of Tensile Strength Prediction for CFRP Bars. Journal of Materials Engineering, 2017, 45(10): 117-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001435      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/117
[1] SMITH S J, BANK L C, GENTRY T R, et al. Analysis and testing of a prototype pultruded composite causeway structure[J]. Composite Structures, 2000, 49(2):141-150.
[2] BANK L C, GENTRY T R, NUSS K H, et al. Construction of a pultruded composite structure:case study[J]. Journal of Composites for Construction, 2000, 4(3):112-119.
[3] HARPER L T, TURNER T A, WARRIOR N A, et al. Characterisation of random carbon fiber composites from a directed fiber preforming process:the effect of tow filamentisation[J]. Composites:Part A, 2007, 38:755-770.
[4] LI B, YANG Y X, YUE Q R, et al. Experimental study on mechanical properties of CFRP tendon[J]. Applied Mechanics and Materials, 2013, 357/360:1097-1101.
[5] 黎伟捷, 李彪, 杨勇新, 等. 我国FRP筋产品标准及指标的探讨[J].玻璃钢/复合材料, 2014(8):101-104. LI W J, LI B, YANG Y X, et al. Discussion on the Chinese standard and specifications of FRP bar products[J]. Fiber Reinforced Plastics/Composites,2014(8):101-104.
[6] 王彬, 杨勇新, 岳清瑞, 等. 复合理论预测国产碳纤维复合材料筋拉伸强度的离散性研究[J]. 玻璃钢/复合材料, 2014(12):63-67. WANG B, YANG Y X, YUE Q R, et al. The discrete research on the values predicted by composite theories and measured for carbon fiber reinforced composite rods[J]. Fiber Reinforced Plastics/Composites, 2014(12):63-67.
[7] 程东辉, 郑文忠. 无粘结部分预应力纤维聚合物筋混凝土梁试验[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(4):537-542. CHENG D H, ZHENG W Z. Behavioral research concrete beam prestressed with unbonded[J].Journal of Shenyang Jianzhu University(Natural Science), 2008, 24(4):537-542.
[8] 郁步军, 蔡文华, 张继文, 等. 碳纤维增强复合材料筋黏结型群锚静载试验研究[J]. 工业建筑, 2013, 43(4):118-121. YU B J, CAI W H, ZHANG J W, et al. Study on static load tests of bond type anchors for CFRP tendons[J]. Industrial Construction, 2013, 43(4):118-121.
[9] 孟履祥, 关建光, 徐福泉. 碳纤维筋(CFRP筋)锚具研制及力学性能试验研究[J]. 施工技术, 2005, 34(7):42-45. MENG L X, GUAN J G, XU F Q. The anchorage development and experiment study on the mechanical properties for CFRP tendons[J]. Construction Technology, 2005, 34(7):42-45.
[10] 詹界东, 杜修力, 王作虎. 预应力CFRP筋夹片-粘结型锚具的试验[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(1):31-36. ZHAN J D, DU X L, WANG Z H. Experimental study on the wedge-bond anchorage of CFRP tendons[J]. Journal of Shenyang Jianzhu University(Natural Science), 2010, 26(1):31-36.
[11] 方志, 梁栋, 蒋田勇. 不同粘结介质中CFRP筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(6):47-51. FANG Z, LIANG D, JIANG T Y. Experimental investigation on the anchorage performance of CFRP tendon in different bond mediums[J]. China Civil Engineering Journal, 2006, 39(6):47-51.
[12] 方志, 蒋田勇, 梁栋. CFRP筋在活性粉末混凝土中的锚固性能[J]. 湖南大学学报(自然科学版), 2007, 34(7):1-5. FANG Z, JIANG T Y, LIANG D. The anchorage behavior of CFRP tendons in RPC[J]. Journal of Hunan University(Natural Sciences), 2007, 34(7):1-5.
[13] 李俊波. 配置体外CFRP预应力筋混凝土梁抗弯性能的试验研究[D]. 长沙:湖南大学, 2005. LI J B. Experimental study on flexural behavior of concrete beam prestressed with external CFRP tendons. Changsha:Hunan University, 2005.
[14] 张继文, 龚永智. CFRP筋增强混凝土柱受力性能的研究[C]//第五届全国FRP学术交流会论文集.北京:土木工程学报,2007:495-504. ZHANG J W, GONG Y Z. Study on the behavior of concrete columns reinforced with CFRP tendons[C]//Proceedings of the 5th National FRP Symposium Conference. Beijing:China Civil Engineering Journal, 2007:495-504.
[15] 徐平, 丁亚红, 曾宪桃, 等. 预应力CFRP筋粘结夹片式球面锚具的研制与试验[J]. 玻璃钢/复合材料, 2011(2):3-7. XU P, DING Y H, ZENG X T, et al. Experimental study and development on the CFRP tendons bonding spherical jaw vice anchorage[J]. Fiber Reinforced Plastics/Composites, 2011(2):3-7.
[16] CHOI H T, WEST J S, SOUDKI K A. Effect of partial unbonding on prestressed near-surface-mounted CFRP-strengthened concrete T-beams[J]. Journal of Composites for Construction, 2010, 15(1):93-102.
[17] CHOI H T, WEST J S, SOUDKI K A. Partially bonded near-surface-mounted CFRP bars for strengthened concrete T-beams[J]. Construction and Building Materials, 2011, 25(5):2441-2449.
[18] GRANCE N, ENOMOTO T, BAAH P, et al. Flexural behavior of CFRP precast prestressed decked bulb T-beams[J]. Journal of Composites for Construction, 2011, 16(3):225-234.
[19] RAFI M M, NADJAI A, ALI F, et al. Aspects of behaviour of CFRP reinforced concrete beams in bending[J]. Construction and Building Materials, 2008, 22(3):277-285.
[20] DAVALOS J F, CHEN Y, RAY I. Effect of FRP bar degradation on interface bond with high strength concrete[J]. Cement and Concrete Composites, 2008, 30(8):722-730.
[21] VOGEL H, SVECOVA D. Thermal compatibility and bond strength of FRP reinforcement in prestressed concrete applications[J]. Journal of Composites for Construction, 2007, 11(5):459-468.
[22] DAVOUDI S, VOGEL H, SVECOVA D, et al. CFRP prestressed high-strength concrete prisms subjected to direct tension[J]. Journal of Composites for Construction, 2008, 12(6):588-595.
[23] AHMAD F S, FORET G, Le ROY R. Bond between carbon fibre-reinforced polymer (CFRP) bars and ultra high performance fibre reinforced concrete (UHPFRC):experimental study[J]. Construction and Building Materials, 2011, 25(2):479-485.
[24] MOON D Y, SIM J, OH H. Detailing considerations on RC beams strengthened with CFRP bars embedded in mortar overlay[J]. Construction and Building Materials, 2007, 21(8):1636-1646.
[25] HA G J, KIM Y Y, CHO C G. Groove and embedding techniques using CFRP trapezoidal bars for strengthening of concrete structures[J]. Engineering Structures, 2008,30(4):1067-1078.
[26] LORENZIS L D, SCIALPI V, TEGOLA A L. Analytical and experimental study on bonded-in CFRP bars in glulam timber[J]. Composites Part B:Engineering, 2005, 36(4):279-289.
[27] HA G J, CHO C G, KANG H W, et al. Seismic improvement of RC beam-column joints using hexagonal CFRP bars combined with CFRP sheets[J]. Composite Structures, 2013, 95:464-470.
[28] WAHAB N, SOUDKI K A, TOPPER T. Mechanism of bond behavior of concrete beams strengthened with near-surface-mounted CFRP rods[J]. Journal of Composites for Construction, 2010, 15(1):85-92.
[29] ELREFAI A, WEST J, SOUDKI K. Fatigue of reinforced concrete beams strengthened with externally post-tensioned CFRP tendons[J]. Construction and Building Materials, 2012, 29:246-256.
[30] TANARSLAN H M. The effects of NSM CFRP reinforcements for improving the shear capacity of RC beams[J]. Construction and Building Materials, 2011, 25(5):2663-2673.
[31] NOVIDIS D G, PANTAZOPOULOU S J. Bond tests of short NSM-FRP and steel bar anchorages[J]. Journal of Composites for Construction, 2008, 12(3):323-333.
[32] ANWARUL ISLAM A K M. Effective methods of using CFRP bars in shear strengthening of concrete girders[J]. Engineering Structures, 2009, 31(3):709-714.
[33] WON J P, PARK C G, KIM H H, et al. Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete[J]. Composites Part B:Engineering, 2008, 39(5):747-755.
[34] SASMAL S, KHATRI C P, RAMANJANEYULU K, et al. Numerical evaluation of bond-slip relations for near-surface mounted carbon fiber bars embedded in concrete[J]. Construction and Building Materials, 2013, 40:1097-1109.
[35] ELBADRY M, ELZAROUG O. Control of cracking due to temperature in structural concrete reinforced with CFRP bars[J]. Composite structures, 2004, 64(1):37-45.
[36] MALVAR L J, COX J V, COCHRAN K B. Bond between carbon fiber reinforced polymer bars and concrete. I:experimental study[J]. Journal of composites for construction, 2003, 7(2):154-163.
[37] FLAGA K. Advances in materials applied in civil engineering[J]. Journal of Materials Processing Technology, 2000, 106(1):173-183.
[38] SHARBATDAR M K, SAATCIOGLU M, BENMOKRANE B. Seismic flexural behavior of concrete connections reinforced with CFRP bars and grids[J]. Composite Structures, 2011, 93(10):2439-2449.
[39] BOUGUERRA K, AHMED E A, EL GAMAL S, et al. Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars[J]. Construction and Building Materials, 2011, 25(10):3956-3965.
[40] WANG Y C, KODUR V. Variation of strength and stiffness of fibre reinforced polymer reinforcing bars with temperature[J]. Cement and Concrete Composites, 2005, 27(9):864-874.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[3] 代军, 晏华, 桑练勇, 胡志德, 张寒松. 基于改进主成分分析法的低密度聚乙烯光氧老化行为及综合评价模型[J]. 材料工程, 2018, 46(6): 141-147.
[4] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[5] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[6] 杨一林, 卢珣, 王巍巍, 蒋智杰. 热可逆自修复聚氨酯弹性体的制备及表征[J]. 材料工程, 2017, 45(8): 1-8.
[7] 许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
[8] 王波, 吴亚波, 郭洪宝, 贾普荣, 李俊. 2D-C/SiC复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.
[9] 刘彬, 石常亮, 缪文炳, 董世运. 缺陷/应力交互对碳钢Lcr波声弹性系数的影响[J]. 材料工程, 2017, 45(7): 97-102.
[10] 曹铁山, 程从前, 朱月梅, 张弘伟, 刘松峰, 赵杰. CrMoWV钢的应力松弛行为及其预测[J]. 材料工程, 2017, 45(5): 106-111.
[11] 钟云娇, 边文凤. PAN基碳纤维微晶结构对拉伸强度的影响[J]. 材料工程, 2017, 45(12): 37-42.
[12] 宋磊, 陈纪强, 范汶鑫, 王成国. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45(11): 15-22.
[13] 任魏巍, 邹林池, 张兴峰, 符殿宝, 陈俊锋. 7050铝合金时效成形中应力松弛行为与回弹方程[J]. 材料工程, 2016, 44(9): 89-95.
[14] 付超, 冯微, 童锦艳, 郑运荣, 冯强. GH4033涡轮叶片服役1600h后的显微组织及力学性能评价[J]. 材料工程, 2016, 44(6): 84-91.
[15] 王忠兵, 洪强, 罗小杰, 章谏正, 宋英红, 吴松华, 杨保俊. 高分子中空微球的制备及其在聚硫密封剂中的应用[J]. 材料工程, 2016, 44(4): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn