Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 97-102    DOI: 10.11868/j.issn.1001-4381.2015.001437
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
缺陷/应力交互对碳钢Lcr波声弹性系数的影响
刘彬1,*(), 石常亮2, 缪文炳1, 董世运3
1 江苏科技大学 材料科学与工程学院, 江苏 镇江 212003
2 广东省工业分析检测中心, 广州 510650
3 装甲兵工程学院 装备再制造技术国防科技重点实验室, 北京 100072
Interaction Influence of Flaw and Stress on Lcr Wave Acoustoelastic Coefficient of Carbon Steel
Bin LIU1,*(), Chang-liang SHI2, Wen-bing MIAO1, Shi-yun DONG3
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
2 Guangdong Industrial Analysis and Testing Center, Guangzhou 510650, China
3 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(2533 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于Lcr波声弹性理论,探讨缺陷及其尺寸对Lcr波评价应力的影响机理。结合"当量法"预制不同直径盲孔,采用互相关系数函数计算Lcr波时间差,通过线性拟合得到Lcr波声弹性系数,基于弹塑性变形和圆孔应力集中理论澄清盲孔直径对Lcr波声弹性系数的影响机理。结果表明:各直径盲孔Lcr波时间差随应力增大基本呈线性增加,但其非线性特征亦逐渐明显,线性阶段的最大应力值小于试样屈服强度;Lcr波声弹性系数随盲孔直径增大逐渐减小,并趋于平稳。分析认为,盲孔应力集中是导致上述结果的主要原因,试样各向异性组织及盲孔深度也是其重要因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘彬
石常亮
缪文炳
董世运
关键词 Lcr波声弹性理论应力集中无损评价弹塑性变形交互影响    
Abstract

Based on Lcr wave acoustoelastic theory, the influence mechanism of blind-hole on stress evaluation with Lcr wave was discussed. Combined with equivalent method, the blind-holes with different diameters were preset, the difference in time of flight between Lcr wave was calculated by cross correlation coefficient function, the Lcr wave acoustoelastic coefficient was determined with linear fitting function, the influence mechanism of blind-hole diameter on Lcr wave acoustoelastic coefficient was clarified based on the elastic plastic deformation theory and stress concentration theory of hole. The results show that when the diameter of blind-hole is different, the change rule of the difference in time of flight between Lcr wave is basically the same as stress increases, the difference in time of flight between Lcr wave increases linearly as stress increases, while the nonlinear feature is also gradually obvious, the maximum stress in linear stage is less than the yield strength of specimen, the Lcr wave acoustoelastic coefficient decreases gradually as blind-hole diameter increases, and it tends to be constant. The analysis shows that the stress concentration is seen as the main reason for above results, anisotropic structure of specimen and blind-hole depth are also the important reasons for that.

Key wordsLcr wave acoustoelastic theory    stress concentration    nondestructive evaluation    elastic plastic deformation    interaction influence
收稿日期: 2015-11-24      出版日期: 2017-07-21
中图分类号:  TG115.2  
基金资助:国家自然科学基金资助项目(51305172);中国博士后科学基金资助项目(2016M591795);广东省公益研究与能力建设专项(2015-A030401073)
通讯作者: 刘彬     E-mail: liubindely@163.com
作者简介: 刘彬(1983-), 男, 博士, 讲师, 研究方向:表面工程、质量无损评价及寿命预测, 联系地址:江苏省镇江市梦溪路2号江苏科技大学材料科学与工程学院(212003), E-mail:liubindely@163.com
引用本文:   
刘彬, 石常亮, 缪文炳, 董世运. 缺陷/应力交互对碳钢Lcr波声弹性系数的影响[J]. 材料工程, 2017, 45(7): 97-102.
Bin LIU, Chang-liang SHI, Wen-bing MIAO, Shi-yun DONG. Interaction Influence of Flaw and Stress on Lcr Wave Acoustoelastic Coefficient of Carbon Steel. Journal of Materials Engineering, 2017, 45(7): 97-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001437      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/97
Yield strength/MPa Ultimate strength/MPa Elongation/%
240 468 22
Table 1  Q235钢力学性能
Fig.1  预置盲孔静载拉伸试样示意图
Fig.2  不同直径盲孔处Q235钢Lcr
(a)0.5mm;(b)3.0mm
Fig.3  不同直径盲孔处Lcr波时间差与应力曲线
Fig.4  不同载荷时Q235钢应力分布
(a)15kN;(b)25kN;(c)50kN;(d)62.5kN
Fig.5  沿盲孔中心的应力曲线
Fig.6  Lcr波声弹性系数与盲孔直径关系
Fig.7  无限大薄板中圆孔应力集中示意图
Fig.8  Q235钢显微组织
1 孙鹤立, 张腾. 车体铝合金氩弧焊与搅拌摩擦焊残余应力研究[J]. 铁道机车车辆, 2016, 36 (4): 99- 102.
1 SUN H L , ZHANG T . Research on residual stress of argon arc welding and friction stir welding for aluminium alloy of carbody[J]. Railway Locomotive & Car, 2016, 36 (4): 99- 102.
2 刘晓佳, 林健, 雷永平, 等. 钛合金电子束焊接表面残余应力的测试和有限元分析[J]. 航空材料学报, 2016, 36 (4): 35- 40.
doi: 10.11868/j.issn.1005-5053.2016.4.005
2 LIU X J , LIN J , LEI Y P , et al. Residual stress test and finite element analysis of titanium alloy surface obtained by electron beam welding[J]. Journal of Aeronautical Materials, 2016, 36 (4): 35- 40.
doi: 10.11868/j.issn.1005-5053.2016.4.005
3 赵翠华. 残余应力超声波测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
3 ZHAO C H. Study on ultrasonic measurement of residual stress[D]. Harbin: Harbin Institute of Technology, 2008.
4 王晓, 史亦韦, 梁菁, 等. 声弹性法测量铝合金预拉伸板中的应力[J]. 材料工程, 2015, 43 (12): 95- 100.
doi: 10.11868/j.issn.1001-4381.2015.12.016
4 WANG X , SHI Y W , LIANG J , et al. Stress in pre-stretched aluminum alloy plate by acoustic elasticity[J]. Journal of Materials Engineering, 2015, 43 (12): 95- 100.
doi: 10.11868/j.issn.1001-4381.2015.12.016
5 齐红宇, 刘金龙, 杨晓光, 等. 基于云纹干涉法与钻孔法的等离子热障涂层残余应力实验[J]. 航空动力学报, 2011, 26 (3): 617- 621.
5 QI H Y , LIU J L , YANG X G , et al. Investigation on residual stress of plasma sprayed thermal barrier coatings based on moire interferometry and hole drilling method[J]. Journal of Aerospace Power, 2011, 26 (3): 617- 621.
6 吴剑剑. 淬火硬化层残余应力分布磁记忆检测[D]. 南昌: 南昌航空大学, 2015.
6 WU J J. Magnetic memory detection of the distribution of residual stress on hardened layer[D]. Nanchang: Nangchang Hangkong University, 2015.
7 YASHAR J , MEHDI A , MEHDI A N . Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates[J]. Materials & Design, 2013, 45, 628- 642.
8 YASHAR J , SEYEDALI S , MEHDI A N . Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding[J]. Materials & Design, 2014, 55, 27- 34.
9 SEYEDALI S , MEHDI A N , YASHAR J , et al. Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates[J]. Materials & Design, 2013, 52, 870- 880.
10 路浩. 基于全包络权重算法的超声波法残余应力无损测量系统[J]. 焊接学报, 2015, 36 (3): 101- 104.
10 LU H . Ultrasonic residual stress measurement system based on entire envelope weighting algorithm[J]. Transactions of the China Welding Institution, 2015, 36 (3): 101- 104.
11 路浩, 刘雪松, 孟立春, 等. 高速列车车体服役状态残余应力超声波法无损测量及验证[J]. 焊接学报, 2009, 30 (4): 81- 84.
11 LU H , LIU X S , MENG L C , et al. Residual stress evaluation of high-speed train body structure by ultrasonic method and verification[J]. Transactions of the China Welding Institution, 2009, 30 (4): 81- 84.
12 石一飞, 沈中华, 倪晓武, 等. 激光激发瑞利波测量铝合金焊接残余应力[J]. 中国激光, 2008, 35 (10): 1627- 1631.
doi: 10.3321/j.issn:0258-7025.2008.10.038
12 SHI Y F , SHEN Z H , NI X W , et al. Welding stress measurement using laser-generated Rayleigh wave in aluminum alloys[J]. Chinese Journal of Lasers, 2008, 35 (10): 1627- 1631.
doi: 10.3321/j.issn:0258-7025.2008.10.038
13 马子奇, 刘雪松, 张世平, 等. 超声波法曲面工件残余应力测量[J]. 焊接学报, 2011, 32 (11): 25- 28.
13 MA Z Q , LIU X S , ZHANG S P , et al. Curved convex face residual stress measurement by ultrasonic method[J]. Transactions of the China Welding Institution, 2011, 32 (11): 25- 28.
14 HU E Y , HE Y M , CHEN Y M . Experimental study on the surface stress measurement with Rayleigh wave detection technique[J]. Applied Acoustics, 2009, 70 (2): 356- 360.
doi: 10.1016/j.apacoust.2008.03.002
15 魏智, 徐蔚, 曲云霞, 等. 表面波声弹性应力检测基础[J]. 河北工业大学学报, 2002, 31 (1): 10- 14.
15 WEI Z , XU W , QU Y X , et al. On acoustoelasticity of surface acoustic wave for ultrasonic NDT[J]. Journal of Hebei University of Technology, 2002, 31 (1): 10- 14.
16 AHARON Z , KENNETH J . Measurement of acoustoelastic coefficients of Rayleigh waves in steel alloys[J]. Journal of Nondestructive Evaluation, 1982, 3 (2): 115- 124.
doi: 10.1007/BF00568968
17 HUGUES D S , KELLY J L . Second-order elastic deformation of solid[J]. Physical Review, 1951, 92 (5): 1145- 1149.
18 刘彬, 董世运, 徐滨士, 等. 互相关函数步长影响超声波评价涂层应力的实验研究[J]. 材料工程, 2011, (4): 54- 57.
18 LIU B , DONG S Y , XU B S , et al. Study on influence of calculating length on evaluation result of stress by surface acoustic wave for coating[J]. Journal of Materials Engineering, 2011, (4): 54- 57.
19 张宁锋. 基于ANSYS的有限宽板孔边应力集中分析[J]. 兰州工业高等专科学校学报, 2007, 14 (1): 34- 38.
19 ZHANG N F . The analysis of stress concentration based on ANSYS[J]. Journal of Lanzhou Polytechnic College, 2007, 14 (1): 34- 38.
20 刘彬. 再制造金属涂层质量的超声波/磁记忆综合无损评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
20 LIU B. Ultrasonic and metal magnetic memory testing method for quality nondestructive evaluation of remanufacturing coating[D]. Harbin: Harbin Institute of Technology, 2012.
[1] 孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵. 基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价[J]. 材料工程, 2022, 50(10): 172-178.
[2] 王跃, 穆志韬, 李旭东, 郝建滨. 单向拉伸条件下补片参数对复合材料胶接修复结构的影响[J]. 材料工程, 2017, 45(4): 108-112.
[3] 谢孝昌, 李旭东, 汤春峰, 付书红. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程, 2016, 44(2): 88-93.
[4] 樊俊铃, 郭强, 赵延广, 郭杏林. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8): 62-71.
[5] 王晓, 史亦韦, 梁菁, 何方成, 陶春虎. 声弹性法测量铝合金预拉伸板中的应力[J]. 材料工程, 2015, 43(12): 95-100.
[6] 王欣, 尤宏德, 李嘉荣, 赵金乾, 汤智慧, 陆峰. 陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响[J]. 材料工程, 2014, 0(4): 53-57.
[7] 赵彦玲, 周凯, 车万博, 铉佳平, 车春雨. 铝硅合金轧制中增强体颗粒应力集中数值模拟[J]. 材料工程, 2013, 0(3): 51-54,60.
[8] 颜廷俊, 张杰东, 冯国栋, 陈建飞. 基于金属磁记忆的热采湿蒸汽发生器炉管缺陷早期检测[J]. 材料工程, 2011, 0(9): 68-71.
[9] 冷建成, 徐敏强, 王坤, 李建伟. 基于磁记忆技术的疲劳损伤监测[J]. 材料工程, 2011, 0(5): 26-29.
[10] 刘德林, 胡小春, 何玉怀, 张兵, 刘昌奎, 姜涛. 从失效案例探讨钢制紧固件的氢脆问题[J]. 材料工程, 2011, 0(10): 78-83.
[11] 王慧鹏, 董世运, 董丽虹, 徐滨士. 不同应力集中系数下磁记忆信号影响因素研究[J]. 材料工程, 2010, 0(12): 35-38.
[12] 董丽虹, 徐滨士, 董世运, 宋丽, 陈群志, 石常亮. 金属磁记忆技术表征应力集中、残余应力及缺陷的探讨[J]. 材料工程, 2009, 0(8): 19-23.
[13] 刘昌奎, 陶春虎, 陈星, 张兵, 董世运. 金属磁记忆检测技术定量评估构件疲劳损伤研究[J]. 材料工程, 2009, 0(8): 33-37.
[14] 任吉林, 舒铭航, 伍家驹, 宋凯, 陈曦, 陈晨. 18CrNi4A钢力-磁效应的ANSYS模拟[J]. 材料工程, 2009, 0(11): 40-44.
[15] 陈高升, 张连鸿, 栗付平, 覃海鹰, 李满福. 球面层状弹性轴承结构对其力学行为影响的有限元分析[J]. 材料工程, 2009, 0(10): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn