Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 103-110    DOI: 10.11868/j.issn.1001-4381.2015.001439
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚丙烯腈纤维对汽车摩擦材料性能的影响
刘伯威1,2, 李亚林2,*(), 刘咏1, 杨阳2, 唐兵2, 匡湘铭2
1 中南大学 粉末冶金研究院, 长沙 410083
2 湖南博云汽车制动材料有限公司, 长沙 410205
Influences of PAN Fiber on Performance of Automobile Friction Materials
Bo-wei LIU1,2, Ya-lin LI2,*(), Yong LIU1, Yang YANG2, Bing TANG2, Xiang-ming KUANG2
1 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
2 Hunan Boyun Automobile Brake Materials Co., Ltd., Changsha 410205, China
全文: PDF(6576 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在一种成熟低金属配方基础上,采用热压法制备聚丙烯腈纤维增强摩擦材料,研究聚丙烯腈纤维含量对摩擦材料物理性能、力学性能、摩擦磨损性能及制动噪音的影响。结果表明:随聚丙烯腈纤维含量增加,摩擦材料的密度逐渐降低,而气孔率、压缩变形量和内剪切强度先升高然后降低;添加聚丙烯腈纤维对名义摩擦因数的影响较小,但会降低材料的抗高温衰退性能,并且随着其含量的增多,摩擦因数的衰退幅度增大;添加聚丙烯腈纤维会提高材料的磨损率,并随其含量的增加呈现先降低后略有增加的趋势;添加适量的聚丙烯腈纤维有利于抑制噪音的产生,在质量分数为3%~5%左右时,噪音表现最佳。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伯威
李亚林
刘咏
杨阳
唐兵
匡湘铭
关键词 聚丙烯腈纤维物理性能力学性能摩擦磨损性能制动噪音    
Abstract

The PAN (Polyacrylonitrile) fiber enhanced friction materials were prepared by hot-press method based on a low metal formula, and the influences of PAN fiber content on the physical performance mechanical property, friction and wear properties and brake noise of the friction materials were investigated. The results show that as the PAN fiber content increase, the density decrease, and the porosity, shear strength and compress deflection of the friction material increase firstly then decrease; adding PAN fiber to the friction material has little influence on the nominal friction coefficient, but will reduce the anti-high temperature wear performance, and as the content increases, the friction coefficient increases; however, adding PAN fiber will improve the friction and wear rate of materials, but with the PAN fiber content increasing, friction and wear rate exhibits the tendency of decreasing firstly and then slightly increasing; adding adequate PAN fiber is conducive to the suppression of noise generation, when the PAN fiber content is about 3%-5%, the noise performance is the best.

Key wordsPAN fiber    physical performance    mechanical property    friction and wear property    brake noise
收稿日期: 2015-11-24      出版日期: 2017-10-18
中图分类号:  TB333  
基金资助:湖南省战略性新兴产业科技攻关与重大科技成果转化项目(2015GK1015)
通讯作者: 李亚林     E-mail: lyl0933@163.com
作者简介: 李亚林(1987-), 男, 硕士, 研究方向:汽车摩擦材料, 联系地址:湖南省长沙市高新开发区麓松路500号(410205), E-mail:lyl0933@163.com
引用本文:   
刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
Bo-wei LIU, Ya-lin LI, Yong LIU, Yang YANG, Bing TANG, Xiang-ming KUANG. Influences of PAN Fiber on Performance of Automobile Friction Materials. Journal of Materials Engineering, 2017, 45(10): 103-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001439      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/103
Number Resin Rubber PAN fiber Steel fiber Mineral fiber Graphite BaSO4 Others
B1 6 3 0 21 12 8 10 40
B2 6 3 1 21 12 8 9 40
B3 6 3 3 21 12 8 7 40
B4 6 3 5 21 12 8 5 40
B5 6 3 7 21 12 8 3 40
Table 1  摩擦材料的基本配方(质量分数/%)
Fig.1  聚丙烯腈纤维形貌
Process Pressure holding time/s Exhausting time/s
1 10 6
2 10 6
3 9 6
4 9 6
5 8 6
6 8 6
7 240
Table 2  刹车片样品各阶段保压排气时间
Formula Porosity/% Density/(g·cm-3)
B1(0%) 10.27 2.42
B2(1%) 10.07 2.45
B3(3%) 12.53 2.37
B4(5%) 10.55 2.35
B5(7%) 9.71 2.28
Table 3  聚丙烯腈纤维含量对摩擦材料气孔率和密度的影响
Fig.2  摩擦材料显微组织背散射形貌
Fig.3  不同聚丙烯腈含量摩擦材料断面形貌(a) 1%;(b) 3%;(c) 5%;(d) 7%
Fig.4  聚丙烯腈纤维含量对摩擦材料内剪切强度、压缩变形量的影响
Fig.5  聚丙烯腈纤维含量对摩擦材料名义摩擦因数的影响
Fig.6  聚丙烯腈纤维含量对摩擦材料表面形貌的影响(a) 0%;(b) 7%
Fig.7  不同聚丙烯腈纤维含量摩擦材料的衰退性能(a)第一次衰退;(b)第二次衰退;(c)衰退温度曲线
Fig.8  衰退实验后摩擦材料表面形貌
Fig.9  聚丙烯腈纤维DSC/TG曲线
Fig.10  不同聚丙烯腈纤维含量的摩擦材料厚度磨损及质量磨损
Fig.11  不同聚丙烯腈纤维含量的摩擦材料制动噪音发生概率及评分
1 FEI J , LUO W , HUANG J F , et al. Effect of carbon fiber content on the friction and wear performance of paper-based friction materials[J]. Tribology International, 2015, 87, 91- 97.
doi: 10.1016/j.triboint.2015.02.019
2 KUMAR M , SATAPATHY B K , PATNAIK A , et al. Hybrid composite friction materials reinforced with combination of potassium titanate whiskers and aramid fibre:Assessment of fade and recovery performance[J]. Tribology International, 2011, 44 (4): 359- 367.
doi: 10.1016/j.triboint.2010.11.009
3 黄俊钦, 林有希. 制动频率对CaSO4晶须增强树脂基复合摩擦材料性能的影响[J]. 材料工程, 2016, 44 (2): 94- 100.
doi: 10.11868/j.issn.1001-4381.2016.02.015
3 HUANG J Q , LIN Y X . Effect of braking frequency on properties of CaSO4 whiskers reinforced resin-based composite friction materials[J]. Journal of Materials Engineering, 2016, 44 (2): 94- 100.
doi: 10.11868/j.issn.1001-4381.2016.02.015
4 LV M , ZHENG F , WANG Q , et al. Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment[J]. Tribology International, 2015, 92, 246- 254.
doi: 10.1016/j.triboint.2015.06.004
5 SINGH T , PATNAIK A . Performance assessment of lapinus-aramid based brake pad hybrid phenolic composites in friction braking[J]. Archives of Civil and Mechanical Engineering, 2015, 15 (1): 151- 161.
doi: 10.1016/j.acme.2014.01.009
6 WANG F , LIU Y . Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber[J]. Materials & Design, 2014, 57, 449- 455.
7 ZHANG X , LI K Z , LI H J , et al. Tribological and mechanical properties of glass fiber reinforced paper-based composite friction material[J]. Tribology International, 2014, 69, 156- 167.
doi: 10.1016/j.triboint.2013.08.003
8 张留成, 翟雄伟, 丁会利. 高分子材料基础[M]. 北京: 化学工业出版社, 2007.
9 钟珊, 徐帆, 雷帅, 等. PAN预氧纤维径向结构的光密度法研究[J]. 材料工程, 2017, 45 (2): 65- 71.
doi: 10.11868/j.issn.1001-4381.2015.001275
9 ZHONG S , XU F , LEI S , et al. Optical density method of radial structure of PAN-based pre-oxidized fibers[J]. Journal of Materials Engineering, 2017, 45 (2): 65- 71.
doi: 10.11868/j.issn.1001-4381.2015.001275
10 SATAPATHY B K , BIJWE J . Performance of friction materials based on variation in nature of organic fibres:part Ⅰ fade and recovery behaviour[J]. Wear, 2004, 257 (5/6): 573- 584.
11 杨鸣波, 唐志玉. 中国材料工程大典第6卷:高分子材料基础[M]. 北京: 化学工业出版社, 2006: 889- 892.
11 YANG M B , TANG Z Y . China materials engineering canon vol 6:polymer materials engineering[M]. Beijing: Chemical Industry Press, 2006: 889- 892.
12 车耀, 沈新元. 聚丙烯腈纤维抗静电改性的技术现状与发展趋势[J]. 纺织导报, 2006, (11): 6- 8.
doi: 10.3969/j.issn.1003-3025.2006.11.037
12 CHE Y , SHEN X Y . Modification technologies for improving anti-static properties of polyacrylonitrile fiber and developing trends[J]. China Textile Leader, 2006, (11): 76- 78.
doi: 10.3969/j.issn.1003-3025.2006.11.037
13 刘娟. 混杂纤维对盘式制动器衬片性能影响的研究[D]. 贵阳: 贵州大学, 2007.
13 LIU J. Study of the hybrid fibers on friction performance of vehicle brake pad[D]. Guiyang:Guizhou University, 2007.
14 刘震云, 黄伯云, 苏堤, 等. 增强纤维含量对汽车摩擦材料性能的影响[J]. 摩擦学学报, 1999, 19 (4): 322- 326.
14 LIU Z Y , HUANG B Y , SU D , et al. Relationship between fiber content and properties of automotive friction materials[J]. Tribology, 1999, 19 (4): 322- 326.
15 张清海. 有机摩擦材料学[M]. 北京: 中国摩擦密封材料协会, 2008: 156- 157.
15 ZHANG Q H . Organic friction material science[M]. Beijing: China Friction and Sealing Material Association, 2008: 156- 157.
16 白克江, 王伟平. 烧蚀工艺对少金属摩擦材料性能的影响[C]//第十一届中国摩擦密封材料技术交流暨产品展示会论文集(摩擦卷). 北京: 中国摩擦密封材料协会, 2009: 1-5.
16 BAI K J, WANG W P. Study on the influences of the ablation process on the properties of low metal content friction materials[C]//11th China Friction & Sealing Materials Technology Exchange And Product Exhibitions (friction volume).Beijing:China Friction and Sealing Material Association, 2009:1-5.
17 KIM Y C , CHO M H , KIM S J , et al. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials[J]. Wear, 2008, 264 (3/4): 204- 210.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[15] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn