Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 103-110    DOI: 10.11868/j.issn.1001-4381.2015.001439
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚丙烯腈纤维对汽车摩擦材料性能的影响
刘伯威1,2, 李亚林2, 刘咏1, 杨阳2, 唐兵2, 匡湘铭2
1 中南大学 粉末冶金研究院, 长沙 410083;
2 湖南博云汽车制动材料有限公司, 长沙 410205
Influences of PAN Fiber on Performance of Automobile Friction Materials
LIU Bo-wei1,2, LI Ya-lin2, LIU Yong1, YANG Yang2, TANG Bing2, KUANG Xiang-ming2
1 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China;
2 Hunan Boyun Automobile Brake Materials Co., Ltd., Changsha 410205, China
全文: PDF(6576 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在一种成熟低金属配方基础上,采用热压法制备聚丙烯腈纤维增强摩擦材料,研究聚丙烯腈纤维含量对摩擦材料物理性能、力学性能、摩擦磨损性能及制动噪音的影响。结果表明:随聚丙烯腈纤维含量增加,摩擦材料的密度逐渐降低,而气孔率、压缩变形量和内剪切强度先升高然后降低;添加聚丙烯腈纤维对名义摩擦因数的影响较小,但会降低材料的抗高温衰退性能,并且随着其含量的增多,摩擦因数的衰退幅度增大;添加聚丙烯腈纤维会提高材料的磨损率,并随其含量的增加呈现先降低后略有增加的趋势;添加适量的聚丙烯腈纤维有利于抑制噪音的产生,在质量分数为3%~5%左右时,噪音表现最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伯威
李亚林
刘咏
杨阳
唐兵
匡湘铭
关键词 聚丙烯腈纤维物理性能力学性能摩擦磨损性能制动噪音    
Abstract:The PAN (Polyacrylonitrile) fiber enhanced friction materials were prepared by hot-press method based on a low metal formula, and the influences of PAN fiber content on the physical performance mechanical property, friction and wear properties and brake noise of the friction materials were investigated. The results show that as the PAN fiber content increase, the density decrease, and the porosity, shear strength and compress deflection of the friction material increase firstly then decrease; adding PAN fiber to the friction material has little influence on the nominal friction coefficient, but will reduce the anti-high temperature wear performance, and as the content increases, the friction coefficient increases; however, adding PAN fiber will improve the friction and wear rate of materials, but with the PAN fiber content increasing, friction and wear rate exhibits the tendency of decreasing firstly and then slightly increasing; adding adequate PAN fiber is conducive to the suppression of noise generation, when the PAN fiber content is about 3%-5%, the noise performance is the best.
Key wordsPAN fiber    physical performance    mechanical property    friction and wear property    brake noise
收稿日期: 2015-11-24      出版日期: 2017-10-18
中图分类号:  TB333  
通讯作者: 李亚林(1987-),男,硕士,研究方向:汽车摩擦材料,联系地址:湖南省长沙市高新开发区麓松路500号(410205),E-mail:lyl0933@163.com     E-mail: lyl0933@163.com
引用本文:   
刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
LIU Bo-wei, LI Ya-lin, LIU Yong, YANG Yang, TANG Bing, KUANG Xiang-ming. Influences of PAN Fiber on Performance of Automobile Friction Materials. Journal of Materials Engineering, 2017, 45(10): 103-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001439      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/103
[1] FEI J,LUO W,HUANG J F,et al. Effect of carbon fiber content on the friction and wear performance of paper-based friction materials[J]. Tribology International, 2015,87:91-97.
[2] KUMAR M,SATAPATHY B K,PATNAIK A,et al. Hybrid composite friction materials reinforced with combination of potassium titanate whiskers and aramid fibre:Assessment of fade and recovery performance[J]. Tribology International, 2011,44(4):359-367.
[3] 黄俊钦, 林有希. 制动频率对CaSO4晶须增强树脂基复合摩擦材料性能的影响[J]. 材料工程, 2016, 44(2):94-100. HUANG J Q, LIN Y X. Effect of braking frequency on properties of CaSO4 whiskers reinforced resin-based composite friction materials[J]. Journal of Materials Engineering, 2016, 44(2):94-100.
[4] LV M,ZHENG F,WANG Q,et al. Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment[J]. Tribology International, 2015,92:246-254.
[5] SINGH T,PATNAIK A. Performance assessment of lapinus-aramid based brake pad hybrid phenolic composites in friction braking[J]. Archives of Civil and Mechanical Engineering, 2015,15(1):151-161.
[6] WANG F,LIU Y. Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber[J]. Materials & Design, 2014,57:449-455.
[7] ZHANG X,LI K Z,LI H J,et al. Tribological and mechanical properties of glass fiber reinforced paper-based composite friction material[J]. Tribology International, 2014,69:156-167.
[8] 张留成,翟雄伟,丁会利. 高分子材料基础[M]. 北京:化学工业出版社,2007.162-163.
[9] 钟珊, 徐帆, 雷帅, 等. PAN预氧纤维径向结构的光密度法研究[J]. 材料工程, 2017, 45(2):65-71. ZHONG S, XU F, LEI S, et al. Optical density method of radial structure of PAN-based pre-oxidized fibers[J]. Journal of Materials Engineering, 2017, 45(2):65-71.
[10] SATAPATHY B K,BIJWE J. Performance of friction materials based on variation in nature of organic fibres:part I fade and recovery behaviour[J]. Wear, 2004,257(5/6):573-584.
[11] 杨鸣波,唐志玉. 中国材料工程大典第6卷:高分子材料基础[M]. 北京:化学工业出版社,2006:889-892. YANG M B,TANG Z Y. China materials engineering canon vol 6:polymer materials engineering[M]. Beijing:Chemical Industry Press, 2006:889-892.
[12] 车耀,沈新元. 聚丙烯腈纤维抗静电改性的技术现状与发展趋势[J]. 纺织导报, 2006(11):6-8. CHE Y,SHEN X Y. Modification technologies for improving anti-static properties of polyacrylonitrile fiber and developing trends[J].China Textile Leader, 2006(11):76-78.
[13] 刘娟. 混杂纤维对盘式制动器衬片性能影响的研究[D]. 贵阳:贵州大学,2007. LIU J. Study of the hybrid fibers on friction performance of vehicle brake pad[D]. Guiyang:Guizhou University, 2007.
[14] 刘震云,黄伯云,苏堤,等. 增强纤维含量对汽车摩擦材料性能的影响[J]. 摩擦学学报, 1999,19(4):322-326. LIU Z Y,HUANG B Y,SU D,et al. Relationship between fiber content and properties of automotive friction materials[J].Tribology, 1999, 19(4):322-326.
[15] 张清海. 有机摩擦材料学[M]. 北京:中国摩擦密封材料协会,2008:156-157. ZHANG Q H. Organic friction material science[M]. Beijing:China Friction and Sealing Material Association, 2008:156-157.
[16] 白克江,王伟平.烧蚀工艺对少金属摩擦材料性能的影响[C]//第十一届中国摩擦密封材料技术交流暨产品展示会论文集(摩擦卷). 北京:中国摩擦密封材料协会,2009:1-5. BAI K J,WANG W P. Study on the influences of the ablation process on the properties of low metal content friction materials[C]//11th China Friction & Sealing Materials Technology Exchange And Product Exhibitions (friction volume).Beijing:China Friction and Sealing Material Association, 2009:1-5.
[17] KIM Y C,CHO M H,KIM S J,et al. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials[J]. Wear, 2008,264(3/4):204-210.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn