Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 74-80    DOI: 10.11868/j.issn.1001-4381.2015.001443
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响
龚玉兵1, 王善林1, 李宏祥2, 柯黎明1, 陈玉华1, 马彬1
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063;
2. 北京科技大学 新金属材料国家重点实验室, 北京 100083
Effect of Pulse Width on Microstructure and Hardness of FeSiB Coatings by Laser Cladding
GONG Yu-bing1, WANG Shan-lin1, LI Hong-xiang2, KE Li-ming1, CHEN Yu-hua1, MA Bin1
1. National Defence Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China;
2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3768 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以FeSiB非晶带材为熔覆材料,采用激光熔覆在低碳钢表面制备高致密度涂层,利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度仪等研究不同脉冲宽度对激光熔覆涂层成形、组织特征及硬度的影响。结果表明:随脉冲宽度增大,涂层稀释率升高;裂纹倾向增加,裂纹源萌生由表面到界面处;晶化程度升高,结晶相为α-Fe,Fe2B和Fe3Si;熔合区宽度增大,柱状晶沿外延生长趋势更大;显微硬度先增加后减小。当脉冲宽度为3.2ms时,涂层结构致密,无孔洞缺陷,界面呈良好的冶金结合,稀释率低,为23.2%,涂层平均显微硬度达1192HV,约为基材的10倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚玉兵
王善林
李宏祥
柯黎明
陈玉华
马彬
关键词 FeSiB非晶带材脉冲宽度激光熔覆显微组织显微硬度    
Abstract:High-density coating with FeSiB amorphous ribbons as cladding materials on the surface of mild steel was fabricated by laser cladding. The effect of different pulse widths on formability, microstructure and microhardness of the coatings was analyzed by optical microscope(OM), X-ray diffractometer (XRD), scanning electron microscope (SEM) and microhardness tester. The results show that with the increase of the pulse width, the coating dilute rate rises; the tendency of crack increases and the crack originates from surface to the interface; the degree of crystallization increases and crystallization phases are α-Fe, Fe2B and Fe3Si, fusion zone width increases and the trend of columnar crystals along the epitaxial growth becomes bigger and bigger; the microhardness firstly increases and then decreases. When pulse width is 3.2ms, the structure of the coating is compact, no hole defects, the interface exhibits a good metallurgical combination and the dilute rate is low about 23.2%. Average microhardness of the coating reaches 1192HV, which is about 10 times as much as the substrate.
Key wordsFeSiB amorphous ribbon    pulse width    laser cladding    microstructure    microhardness
收稿日期: 2015-11-26      出版日期: 2018-03-20
中图分类号:  TG174.4  
基金资助: 
通讯作者: 王善林(1977-),男,博士,副教授,主要从事铁基非晶合金的制备及应用、特种连接技术等方面的研究,联系地址:江西省南昌市红谷滩新区南昌航空大学航制学院N栋(330063),E-mail:slwang 70518@nchu.edu.cn     E-mail: slwang70518@nchu.edu.cn
引用本文:   
龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
GONG Yu-bing, WANG Shan-lin, LI Hong-xiang, KE Li-ming, CHEN Yu-hua, MA Bin. Effect of Pulse Width on Microstructure and Hardness of FeSiB Coatings by Laser Cladding. Journal of Materials Engineering, 2018, 46(3): 74-80.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001443      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/74
[1] 魏丹丹,陈庆军,高霁雯,等. 铁基大块非晶合金的发展现状[J].稀有金属材料与工程, 2009, 38(增刊1):80-85. WEI D D, CHEN Q J, GAO J W, et al. Current status of Fe-based bulk amorphous alloy research[J]. Rare Metal Materials and Engineering, 2009, 38(Suppl 1):80-85.
[2] 刘繁茂,张慧燕,张涛.块体非晶合金的形成能力和磁性能[J].材料工程, 2014(10):6-10. LIU F M, ZHANG H Y, ZHANG T. Glass forming ability and magnetic properties of Fe-Nd-B-Zr bulk metallic glasses[J].Journal of Materials Engineering, 2014(10):6-10.
[3] SCULLY J R, GEBERT A, PAYER J H. Corrosion and related mechanical properties of bulk metallic glasses[J]. Journal of Materials Research, 2007,22(2):302-313.
[4] SHEN J, CHEN Q J, SUN J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy[J]. Applied Physics Letters,2005,86(15):151907.
[5] 马世榜,苏彬彬,王旭,等.基于激光熔覆SiC/Ni复合涂层的耐磨性[J].材料工程,2016,44(1):77-82. MA S B,SU B B,WANG X,et al.Wear resistance of SiC/Ni composite coating based on laser cladding[J].Journal of Materials Engineering, 2016,44(1):77-82.
[6] 付贵忠,孔德军,张垒. 激光淬火后Cr12MoV渗铬层的摩擦与磨损性能[J].材料工程,2016,44(4):51-58. FU G Z, KONG D J, ZHANG L. Friction and wear properties of Cr12MoV chromized layer after laser quenching[J].Journal of Materials Engineering,2016,44(4):51-58.
[7] 刘昊,虞钢,何秀丽,等.粉末性质对同轴送粉激光熔覆中粉末流场的影响规律[J].中国激光, 2013,40(5):0503008. LIU H, YU G, HE X L,et al. Effect of powder properties on the convergence of powder stream in coaxid laser cladding[J]. Chinese Journal of Lasers, 2013, 40(5):0503008.
[8] LI R F, LI Z G, ZHU Y Y, et al. Structure and corrosion resistance properties of Ni-Fe-B-Si-Nb amorphous composite coatings fabricated by laser processing[J].Journal of Alloys and Compounds,2013, 580:327-331.
[9] ZHU Y Y, LI Z G, LI R F, et al. Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process[J]. Applied Surface Science,2013,280:50-54.
[10] GARGARELLA P, ALMEIDA A, VILAR R, et al. Formation of Fe-based glassy matrix composite coatings by laser processing[J].Surface and Coatings Technology, 2014,240:336-343.
[11] WANG Y F, LU Q L, XIAO L J, et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J].Rare Metal Materials and Engineering, 2014, 43(2):274-277.
[12] ZHANG P L, LU Y L, YAN H, et al. Effect of Nb addition on Fe-Ni-B-Si amorphous and crystalline composite coatings by laser processing[J].Surface and Coatings Technology, 2013, 236:84-90.
[13] 鲁青龙,王彦芳,栗荔,等.扫描速度对激光熔覆Fe基非晶复合涂层组织与性能的影响[J].中国激光,2013,40(2):0203007. LU Q L, WANG Y F, LI L, et al. Effects of scanning speed on microstructure and properties of laser cladding Fe-based amorphous composite coatings[J]. Chinese Journal of Lasers, 2013, 40(2):0203007.
[14] 乔虹,李庆棠,符寒光,等.激光熔覆工艺参数对Fe-Cr-B合金涂层组织和硬度的影响[J].材料热处理学报,2014,35(2):164-169. QIAO H, LI Q T, FU H G, et al. Effect of processing parameter on microstructure and hardness of Fe-Cr-B alloy coating by laser cladding[J].Transactions of Materials and Heat Treatment, 2014,35(2):164-169.
[15] 侯纪新,章顺虎,蒋小舟,等. 激光熔覆工艺参数及微合金元素对Fe基非晶复合涂层显微硬度的影响[J]. 应用激光, 2015, 35(4):402-407. HOU J X, ZHANG S H, JIANG X Z, et al. Effect of laser cladding parameters and micro-alloy elements on the micro-hardness of Fe-based amorphous composite coating[J]. Applied Laser, 2015, 35(4):402-407.
[16] ZHOU S F, HUANG Y J, ZENG X Y. Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding[J]. Applied Surface Science,2009, 255(20):8494-8500.
[17] 范文中,赵全忠.超短脉冲激光微焊接玻璃进展[J].激光与光电子学进展,2015,52:080001. FAN W Z,ZHAO Q Z.Recent progress in ultrashort pulsed laser microwelding of glasses[J].Laser & Optoelectronics Progress, 2015, 52:080001.
[18] 卢兰志. Fe基非晶合金涂层设计与制备及性能研究[D].北京:北京工业大学, 2010. LU L Z. Fe-based amorphous alloy coating and its properties[D].Beijing:Beijing University of Technology,2010.
[1] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[4] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[5] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[6] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[7] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[8] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[11] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[12] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[13] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[14] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[15] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn