Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (7): 54-59    DOI: 10.11868/j.issn.1001-4381.2015.001515
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zn1-xMnxS稀磁半导体的合成与光学性能
武美荣1,2, 魏智强1,2, 武晓娟1,2, 杨华2, 姜金龙2
1. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050;
2. 兰州理工大学 理学院, 兰州 730050
Synthesis and Optical Properties of Zn1-xMnxS Dilute Magnetic Semiconductors
WU Mei-rong1,2, WEI Zhi-qiang1,2, WU Xiao-juan1,2, YANG Hua2, JIANG Jin-long2
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;
2. School of Science, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(1800 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过水热法制备不同掺杂浓度的Zn1-xMnxS(x=0.00,0.02,0.05,0.07)稀磁半导体材料,研究Mn2+掺杂浓度对ZnS纳米棒微观结构和光学性能的影响。采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、X射线能量色散分析谱仪(XEDS)和紫外可见吸收光谱(UV-vis)对样品的晶体结构、形貌和光学性能进行表征。结果表明:制备的所有样品均具有结晶良好的纤锌矿结构,没有杂峰出现,生成纯相Zn1-xMnxS纳米晶。样品形貌为纳米棒状结构,分散性良好。掺杂的Mn元素进入到ZnS纳米晶中,Mn2+替代了Zn2+,而且随着Mn掺杂量的增加晶格常数减小。同时 UV-vis光谱发现样品的光学带隙增大,发生了蓝移现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武美荣
魏智强
武晓娟
杨华
姜金龙
关键词 稀磁半导体Zn1-xMnxS水热法光学性能    
Abstract:Diluted magnetic semiconductors Zn1-xMnxS with different consistency (x=0.00, 0.02, 0.05, 0.07) were synthesized by hydrothermal method, and the effects of doping concentration Mn2+ on the microstructure and optical properties of ZnS nanorods were investigated. The crystal microstructure,morphology and optical properties of the products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), corresponding selected-area electron diffraction (SAED), X-ray energy dispersive spectrometry (XEDS) and ultraviolet-visible spectrophotometer(UV-vis).The results show that all samples synthesized by this method possess wurtzite structure with good crystallization, no other impurity phase appears and generates single-phase Zn1-xMnxS nanocrystalline. The morphology of the samples is nanorods and well disperses. The doping element of Mn enters into the ZnS nanocrystals, Mn2+ replaces Zn2+, and the lattice constant decreases with the increase of Mn content. Meanwhile, the optical band gap increases and the blue shift occurs for the sample in the UV-vis spectra.
Key wordsdiluted magnetic semiconductor    Zn1-xMnxS    hydrothermal method    optical property
收稿日期: 2015-12-10      出版日期: 2017-07-21
中图分类号:  TB383  
通讯作者: 魏智强(1973-),男,教授,博士,主要从事纳米稀磁半导体材料的制备与性能表征方面的研究工作,联系地址:兰州理工大学理学院(730050),E-mail:zqwei7411@163.com     E-mail: zqwei7411@163.com
引用本文:   
武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
WU Mei-rong, WEI Zhi-qiang, WU Xiao-juan, YANG Hua, JIANG Jin-long. Synthesis and Optical Properties of Zn1-xMnxS Dilute Magnetic Semiconductors. Journal of Materials Engineering, 2017, 45(7): 54-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001515      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/54
[1] WANG Y,HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991,95(2):525-532.
[2] COLVIN V L,SCHLAMP M C,ALIVISATOS A P. Light-emitting diodes made from cadmium selenidenanocrystals and a semiconducting polymer[J]. Nature,1994,370(6488):354-357.
[3] BHARGAVA R N. Doped nanocrystalline materials-physics and applications[J]. Journal of Luminescence,1996,70(1):85-94.
[4] OHNO H,SHEN A,MATSUKURA F,et al. (Ga, Mn) As: a new diluted magnetic semiconductor based on GaAs [J]. Applied Physics Letters,1996,69(3):363-365.
[5] KITAGAWA H,SCHEETZ J P,FARMANA G. Comparison of complementary metal oxide semiconductor and charge-coupled device intraoral X-ray detectors using subjective image quality[J]. Dentomaxillofacial Radiology,2014,32(6):408-411.
[6] GELINAS S,RAO A,KUMAR A,et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes[J]. Science,2014,343(6170):512-516.
[7] UGEDA M M,BRADLEY A J,SHI S F,et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor [J]. Nature Materials,2014,13(12):1091-1095.
[8] HUANG J,YANG Y,XUE S,et al. Photoluminescence and electroluminescence of ZnS∶Cu nanocrystals in polymeric networks[J]. Applied Physics Letters,1997,70(18):2335-2337.
[9] KUMAR S,VERMA N K. Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesizedby reflux method[J]. Journal of Materials Science: Materials in Electronics,2014,25(2):1132-1137.
[10] SHI J,CUI H,LIANG Z,et al. The roles of defect states in photoelectric and photocatalytic processes for Znx Cd 1-x S[J]. Energy & Environmental Science,2011,4(2):466-470.
[11] KANG T,SUNG J,SHIM W,et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts[J]. The Journal of Physical Chemistry C,2009,113(14):5352-5357.
[12] KARAR N,SINGH F,MEHTA B R. Structure and photoluminescence studies on ZnS∶Mn nanoparticles[J]. Journal of Applied Physics,2004,95(2):656-660.
[13] REDDY D A,LIU C,VIJAYALAKSHMI R P,et al. Structural, optical and magnetic properties of Zn0.97-x Alx Cr0.03 S nanoparticles[J]. Ceramics International,2014,40(1):1279-1288.
[14] WANG L,SUN Y,XIE X. Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films[J]. Luminescence,2014,29(3):288-292.
[15] LAI C H,LU M Y,CHEN L J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage[J]. Journal of Materials Chemistry,2012,22(1):19-30.
[16] LIU J Z,YAN P X,YUE G H,et al. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition[J]. Materials Letters,2006,60(29):3471-3476.
[17] KANG T,SUNG J,SHIM W,et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts[J]. The Journal of Physical Chemistry C,2009,113(14):5352-5357.
[18] YUAN H J,YAN X Q,ZHANG Z X,et al. Synthesis, optical, and magnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation[J]. Journal of Crystal Growth,2004,271(3):403-408.
[19] BISWAS S,KAR S,CHAUDHURI S. Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process[J]. The Journal of Physical Chemistry B,2005,109(37):17526-17530.
[20] KUMAR S,VERMA N K. Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods[J]. Journal of Materials Science:Materials in Electronics,2014,25(2):785-790.
[21] 陈娜,苏革,柳伟,等. 锰掺杂氧化镍薄膜的电沉积及性能[J]. 材料工程,2014,(11):67-72. CHEN N,SU G,LIU W,et al. Electrodeposition and properties of Mn-doped NiO thin films[J]. Journal of Materials Engineering,2014,(11):67-72.
[22] BYRAPPA K,ADSCHIRI T. Hydrothermal technology for nano technology[J]. Progress in Crystal Growth and Characterization of Materials,2007,53(2):117-166.
[23] SALAVATI-NIASARI M,LOGHMAN-ESTARKI M R,DAVAR F. Controllable synthesis of wurtzite ZnS nanorods through simple hydrothermal method in the presence of thioglycolic acid[J]. Journal of Alloys and Compounds,2009,475(1):782-788.
[24] WANG L,DAI J,LIU X,et al. Morphology-controlling synthesis of ZnS through a hydrothermal/solvthermal method[J]. Ceramics International,2012,38(3):1873-1878.
[25] GUAN X H,QU P,GUAN X,et al. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties[J]. RSC Advances,2014,4(30):15579-15585.
[26] TAUC J,GRIGOROVICI R,VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi(B),1966,15(2):627-637.
[1] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[2] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[3] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[4] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[5] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[6] 杜宏艳, 戚宇帆, 吴晨雪, 刘玥君, 梁丽萍, 郭文英, 张子栋. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
[7] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[8] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[9] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[10] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[11] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[12] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[13] 刘阳龙, 郑玉婴, 曹宁宁, 王翔. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程, 2017, 45(10): 12-17.
[14] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
[15] 戚瑞琼, 李伟杰, 连虹, 史新伟, 姚宁. Zr2P2WO12/Fe-Ni复合材料的制备及其热膨胀性能研究[J]. 材料工程, 2016, 44(12): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn