Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 54-59    DOI: 10.11868/j.issn.1001-4381.2015.001515
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zn1-xMnxS稀磁半导体的合成与光学性能
武美荣1,2, 魏智强1,2,*(), 武晓娟1,2, 杨华2, 姜金龙2
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
2 兰州理工大学 理学院, 兰州 730050
Synthesis and Optical Properties of Zn1-xMnxS Dilute Magnetic Semiconductors
Mei-rong WU1,2, Zhi-qiang WEI1,2,*(), Xiao-juan WU1,2, Hua YANG2, Jin-long JIANG2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(1800 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过水热法制备不同掺杂浓度的Zn1-xMnxS(x=0.00,0.02,0.05,0.07)稀磁半导体材料,研究Mn2+掺杂浓度对ZnS纳米棒微观结构和光学性能的影响。采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、X射线能量色散分析谱仪(XEDS)和紫外可见吸收光谱(UV-vis)对样品的晶体结构、形貌和光学性能进行表征。结果表明:制备的所有样品均具有结晶良好的纤锌矿结构,没有杂峰出现,生成纯相Zn1-xMnxS纳米晶。样品形貌为纳米棒状结构,分散性良好。掺杂的Mn元素进入到ZnS纳米晶中,Mn2+替代了Zn2+,而且随着Mn掺杂量的增加晶格常数减小。同时UV-vis光谱发现样品的光学带隙增大,发生了蓝移现象。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武美荣
魏智强
武晓娟
杨华
姜金龙
关键词 稀磁半导体Zn1-xMnxS水热法光学性能    
Abstract

Diluted magnetic semiconductors Zn1-xMnxS with different consistency (x=0.00, 0.02, 0.05, 0.07) were synthesized by hydrothermal method, and the effects of doping concentration Mn2+ on the microstructure and optical properties of ZnS nanorods were investigated. The crystal microstructure, morphology and optical properties of the products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), corresponding selected-area electron diffraction (SAED), X-ray energy dispersive spectrometry (XEDS) and ultraviolet-visible spectrophotometer(UV-vis).The results show that all samples synthesized by this method possess wurtzite structure with good crystallization, no other impurity phase appears and generates single-phase Zn1-xMnxS nanocrystalline. The morphology of the samples is nanorods and well disperses. The doping element of Mn enters into the ZnS nanocrystals, Mn2+ replaces Zn2+, and the lattice constant decreases with the increase of Mn content. Meanwhile, the optical band gap increases and the blue shift occurs for the sample in the UV-vis spectra.

Key wordsdiluted magnetic semiconductor    Zn1-xMnxS    hydrothermal method    optical property
收稿日期: 2015-12-10      出版日期: 2017-07-21
中图分类号:  TB383  
基金资助:国家自然科学基金资助项目(51261015);甘肃省自然科学基金资助项目(1308RJZA238)
通讯作者: 魏智强     E-mail: zqwei7411@163.com
作者简介: 魏智强(1973-), 男, 教授, 博士, 主要从事纳米稀磁半导体材料的制备与性能表征方面的研究工作, 联系地址:兰州理工大学理学院(730050), E-mail:zqwei7411@163.com
引用本文:   
武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
Mei-rong WU, Zhi-qiang WEI, Xiao-juan WU, Hua YANG, Jin-long JIANG. Synthesis and Optical Properties of Zn1-xMnxS Dilute Magnetic Semiconductors. Journal of Materials Engineering, 2017, 45(7): 54-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001515      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/54
Fig.1  Zn1-xMnxS样品XRD谱图
x Peak position/(°) d-spacing/nm Lattice constant/nm
a c
0.00 28.492 0.3130 0.3824 0.6261
0.02 28.581 0.3121 0.3813 0.6241
0.05 28.652 0.3113 0.3798 0.6227
0.07 28.746 0.3103 0.3792 0.6206
Table 1  Mn掺杂ZnS样品的XRD测试结果
Fig.2  ZnS(a)和Zn0.93Mn0.07S样品(b), (c)的高分辨透射电镜图以及Zn0.93Mn0.07S样品选区电子衍射图(d)
Fig.3  Zn0.93Mn0.07S样品的XEDS分析
Fig.4  Zn1-xMnxS样品的紫外-可见吸收光谱(a)和(αhν)2关系曲线(b)
1 WANG Y , HERRON N . Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991, 95 (2): 525- 532.
doi: 10.1021/j100155a009
2 COLVIN V L , SCHLAMP M C , ALIVISATOS A P . Light-emitting diodes made from cadmium selenidenanocrystals and a semiconducting polymer[J]. Nature, 1994, 370 (6488): 354- 357.
doi: 10.1038/370354a0
3 BHARGAVA R N . Doped nanocrystalline materials-physics and applications[J]. Journal of Luminescence, 1996, 70 (1): 85- 94.
4 OHNO H , SHEN A , MATSUKURA F , et al. (Ga, Mn) As: a new diluted magnetic semiconductor based on GaAs[J]. Applied Physics Letters, 1996, 69 (3): 363- 365.
doi: 10.1063/1.118061
5 KITAGAWA H , SCHEETZ J P , FARMANA G . Comparison of complementary metal oxide semiconductor and charge-coupled device intraoral X-ray detectors using subjective image quality[J]. Dentomaxillofacial Radiology, 2014, 32 (6): 408- 411.
6 GELINAS S , RAO A , KUMAR A , et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes[J]. Science, 2014, 343 (6170): 512- 516.
doi: 10.1126/science.1246249
7 UGEDA M M , BRADLEY A J , SHI S F , et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor[J]. Nature Materials, 2014, 13 (12): 1091- 1095.
doi: 10.1038/nmat4061
8 HUANG J , YANG Y , XUE S , et al. Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks[J]. Applied Physics Letters, 1997, 70 (18): 2335- 2337.
doi: 10.1063/1.118866
9 KUMAR S , VERMA N K . Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesizedby reflux method[J]. Journal of Materials Science: Materials in Electronics, 2014, 25 (2): 1132- 1137.
doi: 10.1007/s10854-013-1700-6
10 SHI J , CUI H , LIANG Z , et al. The roles of defect states in photoelectric and photocatalytic processes for Znx Cd 1-x S[J]. Energy & Environmental Science, 2011, 4 (2): 466- 470.
11 KANG T , SUNG J , SHIM W , et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts[J]. The Journal of Physical Chemistry C, 2009, 113 (14): 5352- 5357.
doi: 10.1021/jp808433b
12 KARAR N , SINGH F , MEHTA B R . Structure and photoluminescence studies on ZnS:Mn nanoparticles[J]. Journal of Applied Physics, 2004, 95 (2): 656- 660.
doi: 10.1063/1.1633347
13 REDDY D A , LIU C , VIJAYALAKSHMI R P , et al. Structural, optical and magnetic properties of Zn0.97-x Alx Cr0.03 S nanoparticles[J]. Ceramics International, 2014, 40 (1): 1279- 1288.
doi: 10.1016/j.ceramint.2013.07.006
14 WANG L , SUN Y , XIE X . Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films[J]. Luminescence, 2014, 29 (3): 288- 292.
doi: 10.1002/bio.v29.3
15 LAI C H , LU M Y , CHEN L J . Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage[J]. Journal of Materials Chemistry, 2012, 22 (1): 19- 30.
doi: 10.1039/C1JM13879K
16 LIU J Z , YAN P X , YUE G H , et al. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition[J]. Materials Letters, 2006, 60 (29): 3471- 3476.
17 KANG T , SUNG J , SHIM W , et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts[J]. The Journal of Physical Chemistry C, 2009, 113 (14): 5352- 5357.
doi: 10.1021/jp808433b
18 YUAN H J , YAN X Q , ZHANG Z X , et al. Synthesis, optical, and magnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation[J]. Journal of Crystal Growth, 2004, 271 (3): 403- 408.
19 BISWAS S , KAR S , CHAUDHURI S . Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process[J]. The Journal of Physical Chemistry B, 2005, 109 (37): 17526- 17530.
doi: 10.1021/jp053138i
20 KUMAR S , VERMA N K . Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods[J]. Journal of Materials Science:Materials in Electronics, 2014, 25 (2): 785- 790.
doi: 10.1007/s10854-013-1646-8
21 陈娜, 苏革, 柳伟, 等. 锰掺杂氧化镍薄膜的电沉积及性能[J]. 材料工程, 2014, (11): 67- 72.
doi: 10.11868/j.issn.1001-4381.2014.11.012
21 CHEN N , SU G , LIU W , et al. Electrodeposition and properties of Mn-doped NiO thin films[J]. Journal of Materials Engineering, 2014, (11): 67- 72.
doi: 10.11868/j.issn.1001-4381.2014.11.012
22 BYRAPPA K , ADSCHIRI T . Hydrothermal technology for nano technology[J]. Progress in Crystal Growth and Characterization of Materials, 2007, 53 (2): 117- 166.
doi: 10.1016/j.pcrysgrow.2007.04.001
23 SALAVATI-NIASARI M , LOGHMAN-ESTARKI M R , DAVAR F . Controllable synthesis of wurtzite ZnS nanorods through simple hydrothermal method in the presence of thioglycolic acid[J]. Journal of Alloys and Compounds, 2009, 475 (1): 782- 788.
24 WANG L , DAI J , LIU X , et al. Morphology-controlling synthesis of ZnS through a hydrothermal/solvthermal method[J]. Ceramics International, 2012, 38 (3): 1873- 1878.
doi: 10.1016/j.ceramint.2011.10.013
25 GUAN X H , QU P , GUAN X , et al. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties[J]. RSC Advances, 2014, 4 (30): 15579- 15585.
doi: 10.1039/C4RA00659C
26 TAUC J , GRIGOROVICI R , VANCU A . Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi(B), 1966, 15 (2): 627- 637.
doi: 10.1002/(ISSN)1521-3951
[1] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[2] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[3] 陈宇宏, 李曦, 詹茂盛, 赵朋. 聚碳酸酯/聚(1, 4-环己烷二甲酸- 1, 4-环己烷二甲醇酯)共混物的光学特性及机理分析[J]. 材料工程, 2022, 50(6): 117-123.
[4] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[5] 谌建平, 张旭, 林东宝, 潘海波, 沈水发. 纳米花/棒SnO2的水热法制备及其气敏性[J]. 材料工程, 2021, 49(6): 164-169.
[6] 孙琦伟, 王韬, 陈宇宏, 葛勇, 郎建林, 王博伦, 颜悦. 紫外加速老化对聚碳酸酯力学和光学性能的影响[J]. 材料工程, 2021, 49(11): 83-89.
[7] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[10] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[11] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[12] 杜宏艳, 戚宇帆, 吴晨雪, 刘玥君, 梁丽萍, 郭文英, 张子栋. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
[13] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[14] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[15] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn