Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 67-73    DOI: 10.11868/j.issn.1001-4381.2015.001523
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
锌基体疏液表面的制备及润湿行为
韩祥祥, 于思荣(), 李好
中国石油大学(华东) 机电工程学院, 山东 青岛 266580
Preparation and Wetting Behavior of Lyophobic Surface on Zinc Substrate
Xiang-xiang HAN, Si-rong YU(), Hao LI
College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
全文: PDF(2192 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用盐酸水溶液化学刻蚀和水热反应的方法在锌基体上构建微纳米粗糙结构,再经全氟辛酸修饰,制备疏液表面。通过X射线衍射仪、扫描电镜、红外光谱仪和接触角测量仪对试样表面的相组成、微观形貌、化学成分及润湿性进行表征。结果表明:试样的亚微米结构表面生长出一层ZnO纳米棒,在低表面能物质的共同作用下表现出良好的抗水流冲击性和稳定性。当盐酸浓度为1.0mol/L,水热反应温度为95℃时,ZnO纳米棒的生长形态最优,水和花生油在疏液表面的最大接触角分别为154.65°和144.65°,滚动角小于10°。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩祥祥
于思荣
李好
关键词 疏液化学刻蚀水热反应ZnO纳米棒    
Abstract

Micro-nano structure on zinc substrate was fabricated through the combination of chemical etching with hydrochloric acid aqueous solution and hydrothermal reaction. After modification with perfluorooctanoic solution, the lyophobic surface was prepared. The phase composition, microstructure, chemical composition, and wettability of the as-obtained surface were investigated by X-ray diffractometer, scanning electron microscope, Fourier transform infrared spectrometer, and contact angle tester. The results show that a layer of ZnO nano-rods grows on the surface of the submicrometer structure, and exhibits good resistance to water impact and stability under the combined action of low surface energy material. When hydrochloric acid concentration is 1.0mol/L and hydrothermal reaction temperature is 95℃, the lyophobic surface possesses the best morphology of ZnO nano-rods. The maximum contact angles of distilled water and peanut oil are 154.65° and 144.65°, respectively, and the sliding angle is less than 10°.

Key wordslyophobicity    chemical etching    hydrothermal reaction    ZnO nano-rod
收稿日期: 2015-12-13      出版日期: 2018-03-20
中图分类号:  TB383  
  TG146.1  
基金资助:国家自然科学基金资助项目(51075184)
通讯作者: 于思荣     E-mail: yusr@upc.edu.cn
作者简介: 于思荣(1964-), 男, 博士, 教授, 博士生导师, 研究方向为金属材料表面改性, 金属基复合材料, 联系地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)机电工程学院(266580), E-mail:yusr@upc.edu.cn
引用本文:   
韩祥祥, 于思荣, 李好. 锌基体疏液表面的制备及润湿行为[J]. 材料工程, 2018, 46(3): 67-73.
Xiang-xiang HAN, Si-rong YU, Hao LI. Preparation and Wetting Behavior of Lyophobic Surface on Zinc Substrate. Journal of Materials Engineering, 2018, 46(3): 67-73.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001523      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/67
Cd Cu Fe Pb Sn Zn
0.0004 0.0001 0.0002 0.0014 0.0001 Bal
Table 1  锌片的化学成分(质量分数/%)
Fig.1  锌片表面的SEM图
(a)刻蚀;(b)刻蚀及水热反应;(c)刻蚀、水热反应及修饰
Fig.2  不同过程中锌片表面的XRD图谱
Fig.3  不同过程中锌片表面的红外光谱
Processing condition Contact angle/(°)
Water Peanut oil
Flat zinc 57.78 49.51
Flat zinc+modification 102.73 95.53
Chemical etching+modification 125.51 114.47
Hydrothermal reaction+modification 137.26 125.95
Chemical etching+hydrothermal reaction+modification 154.65 144.65
Table 2  不同加工条件下锌片表面与水和花生油的接触角
Fig.4  疏液表面与水和花生油的接触形态
Fig.5  水流冲击过程中(a)及冲击后(b)的疏液表面
Fig.6  挤压状态下润湿性的测试过程
(a)悬停;(b)接触;(c)挤压;(d)后移;(e)拉伸;(f)悬停
Fig.7  疏液表面与水及花生油的接触角随盐酸浓度(a)和水热反应温度(b)的变化
Fig.8  盐酸浓度和水热反应温度对疏液表面形貌的影响
(a)0.5mol/L; (b)1.0mol/L; (c)1.5mol/L; (d)75℃;(e)95℃; (f)125℃
1 NISHIMOTO S , BHUSHAN B . Bioinspired self-cleaning surfaces with superhydrophobicity, super-oleophobicity, and superhydrophilicity[J]. RSC Advances, 2013, 3 (3): 671- 690.
doi: 10.1039/C2RA21260A
2 张勇, 皮丕辉, 文秀芳, 等. 梯度接触角表面的构建与应用[J]. 化学进展, 2011, 23 (12): 2457- 2465.
2 ZHANG Y , PI P H , WEN X F , et al. Construction and application of wettability gradient surfaces[J]. Progress in Chemistry, 2011, 23 (12): 2457- 2465.
3 CHAUDHARY A , BARSHILIA H C . Nanometric multiscale rough CuO/Cu(OH)2 superhydrophobic surfaces prepared by a facile one-step solution-immersion process:transition to superhydrophilicity with oxygen plasma treatment[J]. The Journal of Physical Chemistry C, 2011, 115 (37): 18213- 18220.
doi: 10.1021/jp204439c
4 朱亚利, 范伟博, 冯利邦, 等. 超疏水镁合金表面的防黏附和耐腐蚀性能[J]. 材料工程, 2016, 44 (1): 66- 70.
doi: 10.11868/j.issn.1001-4381.2016.01.010
4 ZHU Y L , FAN W B , FENG L B , et al. Anti-adhesion and corrosion resistance of superhydrophobic magnesium alloy surface[J]. Journal of Materials Engineering, 2016, 44 (1): 66- 70.
doi: 10.11868/j.issn.1001-4381.2016.01.010
5 KIM H , NOH K , CHOI C , et al. Extreme superomniphobicity of multiwalled 8nm TiO2 nanotubes[J]. Langmuir, 2011, 27 (16): 10191- 10196.
doi: 10.1021/la2014978
6 ARTUS G R J , ZIMMERMANN J , REIFLER F A , et al. A superoleophobic textile repellent towards impacting drops of alkanes[J]. Applied Surface Science, 2012, 258 (8): 3835- 3840.
doi: 10.1016/j.apsusc.2011.12.041
7 HUANG L Y , LIU Z L , LIU Y M , et al. Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J]. International Journal of Thermal Sciences, 2011, 50 (4): 432- 439.
doi: 10.1016/j.ijthermalsci.2010.11.011
8 LI W , KANG Z X . Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Technology, 2014, 253 (25): 205- 213.
9 WANG X L , LIU X J , ZHOU F , et al. Self-healing superamphiphobicity[J]. Chemical Communications, 2011, 47 (8): 2324- 2326.
doi: 10.1039/C0CC04066E
10 GANESH V A , DINACHALI S S , SREEKUMARAN N A , et al. Robust superamphiphobic film from electrospun TiO2 nanostructures[J]. ACS Applied Materials & Interfaces, 2013, 5 (5): 1527- 1532.
11 LI Y , GE B , ZHU X T , et al. A facile way to fabricate a superamphiphobic surface[J]. Applied Physics A, 2014, 115 (3): 765- 770.
doi: 10.1007/s00339-014-8438-8
12 孙小东, 刘刚, 李龙阳, 等. 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29 (7): 523- 528.
doi: 10.11901/1005.3093.2014.630
12 SUN X D , LIU G , LI L Y , et al. Preparation and properties of superhydrophobized sprayed Zn-Al coating[J]. Chinese Journal of Materials Research, 2015, 29 (7): 523- 528.
doi: 10.11901/1005.3093.2014.630
13 WANG H X , XUE Y H , DING J , et al. Durable, self-healing superhydrophobic and superolephobic surfaces from fluorinateddecyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl sliane[J]. Angewandte Chemie International Edition, 2011, 50 (48): 11433- 11436.
doi: 10.1002/anie.v50.48
14 ZHU X T , ZHANG Z Z , XU X H , et al. Facile fabrication of a superamphiphobic surface on the copper substrate[J]. Journal of Colloid and Interface Science, 2012, 367 (1): 443- 449.
doi: 10.1016/j.jcis.2011.10.008
15 SHE Z X , LI Q , WANG Z W , et al. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J]. Chemical Engineering Journal, 2013, 228 (28): 415- 424.
16 ZHANG Y F , GE D T , YANG S . Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J]. Journal of Colloid and Interface Science, 2014, 423 (6): 101- 107.
17 GAO L C , McCARTHY T J . Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization[J]. Langmuir, 2008, 24 (17): 9183- 9188.
doi: 10.1021/la8014578
18 MILIONIS A , MARTIRADONNA L , ANYFANTIS G C , et al. Control of the water adhesion on hydrophobic micropillars by spray coating technique[J]. Colloid and Polymer Science, 2013, 291 (2): 401- 407.
doi: 10.1007/s00396-012-2752-5
[1] 徐顺建. 添加剂辅助水热热解制备尺寸可控纳米孔碳微球[J]. 材料工程, 2019, 47(5): 137-144.
[2] 马国华, 彭同江, 吴卫东, 刘海峰, 李明. Ni2+掺杂纤蛇纹石纳米管的制备与磁性研究[J]. 材料工程, 2011, 0(9): 77-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn