Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 93-100    DOI: 10.11868/j.issn.1001-4381.2015.001550
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响
杨旭东1,*(), 陈亚军1, 师春生2, 赵乃勤2
1 中国民航大学 中欧航空工程师学院, 天津 300300
2 天津大学 材料科学与工程学院, 天津 300072
Effect of Ball-milling Process on the Microstructure and Mechanical Properties of In-situ Synthesized Carbon Nanotube Reinforced Aluminum Composites
Xu-dong YANG1,*(), Ya-jun CHEN1, Chun-sheng SHI2, Nai-qin ZHAO2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
全文: PDF(6400 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

将原位化学气相沉积法合成的碳纳米管(CNTs)与铝的复合粉末进行球磨混合,进而粉末冶金制备CNTs/Al复合材料,研究球磨工艺对复合材料的微观组织和力学性能的影响。结果表明:球磨过程中不添加过程控制剂所得到的复合材料力学性能优异;随着球磨时间的增加,CNTs逐步分散嵌入铝基体内部,复合材料的组织也变得更加致密均匀。CNTs/Al复合材料的硬度和抗拉强度均随球磨时间的延长持续增加,但是伸长率先增后减。经90min球磨的CNTs/Al复合材料展现了强韧兼备的特点,其硬度和抗拉强度较原始纯铝提高了1.4倍和1.7倍,并且具有17.9%的高伸长率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
陈亚军
师春生
赵乃勤
关键词 碳纳米管力学性能球磨铝基复合材料    
Abstract

Carbon nanotube (CNT) reinforced aluminum matrix composites were fabricated by powder metallurgy route, including in-situ chemical vapor deposition synthesis and ball-milling process. The effect of ball-milling process on the microstructure and mechanical properties of CNT/Al composites was investigated. The results show that the best tensile properties of CNT/Al composites can be achieved without adding any process control agent; with the increment of milling time, CNTs are gradually embedded into Al matrix and the composite microstructure becomes more dense and uniform. The hardness and tensile strength of CNT/Al composites continuously increase with the increase of milling time; however, the elongation firstly increases and then decreases. The composites after 90min of milling show a good balance between strength and ductility, and the hardness and tensile strength of which is 1.4 and 1.7 times higher than that of pure Al respectively, with elongation of 17.9%.

Key wordscarbon nanotube    mechanical property    ball milling    aluminium matrix composites
收稿日期: 2015-12-21      出版日期: 2017-09-16
中图分类号:  TB331  
基金资助:国家自然科学基金资助项目(51301198);中国民航大学科研启动基金资助项目(2012QD14)
通讯作者: 杨旭东     E-mail: xdyangtj@163.com
作者简介: 杨旭东(1985-), 男, 讲师, 博士, 从事铝合金及铝基复合材料研究, 联系地址:天津市东丽区中国民航大学北院中欧航空工程师学院(300300), E-mail:xdyangtj@163.com
引用本文:   
杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
Xu-dong YANG, Ya-jun CHEN, Chun-sheng SHI, Nai-qin ZHAO. Effect of Ball-milling Process on the Microstructure and Mechanical Properties of In-situ Synthesized Carbon Nanotube Reinforced Aluminum Composites. Journal of Materials Engineering, 2017, 45(9): 93-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001550      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/93
Fig.1  添加不同PCA球磨后CNTs/Al复合粉末的SEM照片(图中黑色箭头所指为裸露在铝基体表面的CNTs)
(a), (b)硬脂酸;(c), (d)甲醇;(e), (f)不添加PCA
Fig.2  PCA对CNTs/Al复合材料拉伸性能的影响
Fig.3  经不同球磨时间得到CNTs/Al复合粉末的SEM照片
(a)0min;(b)30min;(c)60min;(d)90min;(e)120min;(f)为图 3(d)铝粉表面的放大图
Fig.4  经不同球磨时间制备的纯铝金相照片
(a)0min;(b)90min
Fig.5  经不同球磨时间制备的CNTs/Al复合材料的金相照片
(a)30min;(b)60min;(c)90min;(d)120min
Fig.6  随球磨时间增加纯铝及CNTs/Al复合材料显微硬度的变化
Fig.7  球磨时间对纯铝和CNTs/Al复合材料拉伸性能的影响
(a)抗拉强度;(b)伸长率
Fig.8  球磨时间对CNTs/Al复合材料拉伸断口的影响
(a),(b)30min;(c),(d)90min
1 杨益, 杨盛良. 碳纳米管增强金属基复合材料的研究现状及展望[J]. 材料导报, 2007, 21 (增刊1): 182- 184.
1 YANG Y , YANG S L . Research status and development prospect of mental matrix composite reinforced by carbon nanotubes[J]. Materials Review, 2007, 21 (Suppl 1): 182- 184.
2 THOSTENSON E T , REN Z , CHOU T W . Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology, 2001, 61 (13): 1899- 1912.
doi: 10.1016/S0266-3538(01)00094-X
3 BAKSHI S R , LAHIRI D , AGARWAL A . Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55 (1): 41- 64.
doi: 10.1179/095066009X12572530170543
4 CHA S I , KIM K T , ARSHAD S N , et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17 (11): 1377- 1381.
doi: 10.1002/(ISSN)1521-4095
5 JIANG L , LI Z , FAN G , et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50 (5): 1993- 1998.
doi: 10.1016/j.carbon.2011.12.057
6 BAKSHI S R , AGARWAL A . An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2010, 49 (2): 533- 544.
7 LAHA T , CHEN Y , LAHIRI D , et al. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming[J]. Composites Part A, 2009, 40 (5): 589- 594.
doi: 10.1016/j.compositesa.2009.02.007
8 LIU Z Y , XIAO B L , WANG W G , et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing[J]. Carbon, 2014, 69, 264- 274.
doi: 10.1016/j.carbon.2013.12.025
9 ZHOU S , ZHANG X , DING Z , et al. Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique[J]. Composites Part A, 2007, 38 (2): 301- 306.
doi: 10.1016/j.compositesa.2006.04.004
10 ESAWI A M K , MORSI K , SAYED A , et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A, 2011, 42 (3): 234- 243.
doi: 10.1016/j.compositesa.2010.11.008
11 DENG C F , WANG D Z , ZHANG X X , et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering:A, 2007, 444 (1): 138- 145.
12 许世娇, 肖伯律, 刘振宇, 等. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48 (7): 882- 888.
12 XU S J , XIAO B L , LIU Z Y , et al. Microstructures and mechanical properties of CNT/Al composites fabricated by high energy ball-milling method[J]. Acta Metallurgica Sinica, 2012, 48 (7): 882- 888.
13 杨旭东, 邹田春, 陈亚军, 等. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44 (7): 67- 72.
doi: 10.11868/j.issn.1001-4381.2016.07.012
13 YANG X D , ZOU T C , CHEN Y J , et al. Fabrication and mechanical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J]. Journal of Materials Engineering, 2016, 44 (7): 67- 72.
doi: 10.11868/j.issn.1001-4381.2016.07.012
14 POIRIER D , GAUVIN R , DREW R A L . Structural characterization of a mechanically milled carbon nanotube/aluminum mixture[J]. Composites Part A, 2009, 40 (9): 1482- 1489.
doi: 10.1016/j.compositesa.2009.05.025
15 HE C N , ZHAO N Q , SHI C S , et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials, 2007, 19 (8): 1128- 1132.
doi: 10.1002/(ISSN)1521-4095
16 YANG X D , LIU E Z , SHI C S , et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563, 216- 220.
doi: 10.1016/j.jallcom.2013.02.066
17 WANG J W , YANG X D , ZHANG M , et al. A novel approach to obtain in-situ growth carbon nanotube reinforced aluminum foams with enhanced properties[J]. Materials Letters, 2015, 161, 763- 766.
doi: 10.1016/j.matlet.2015.09.093
18 YANG X D , ZOU T C , SHI C S , et al. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites[J]. Materials Science and Engineering:A, 2016, 660, 11- 18.
doi: 10.1016/j.msea.2016.02.062
19 CHEN B , LI S , IMAI H , et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests[J]. Composites Science and Technology, 2015, 113, 1- 8.
doi: 10.1016/j.compscitech.2015.03.009
20 BOESL B , LAHIRI D , BEHDAD S , et al. Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests[J]. Carbon, 2014, 69, 79- 85.
doi: 10.1016/j.carbon.2013.11.061
21 KELLY A , TYSON W R . Tensile properties of fibre-reinforced metals:copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids, 1965, 13 (6): 329- 350.
doi: 10.1016/0022-5096(65)90035-9
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn