Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 93-100    DOI: 10.11868/j.issn.1001-4381.2015.001550
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响
杨旭东1, 陈亚军1, 师春生2, 赵乃勤2
1 中国民航大学 中欧航空工程师学院, 天津 300300;
2 天津大学 材料科学与工程学院, 天津 300072
Effect of Ball-milling Process on the Microstructure and Mechanical Properties of In-situ Synthesized Carbon Nanotube Reinforced Aluminum Composites
YANG Xu-dong1, CHEN Ya-jun1, SHI Chun-sheng2, ZHAO Nai-qin2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
全文: PDF(6400 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 将原位化学气相沉积法合成的碳纳米管(CNTs)与铝的复合粉末进行球磨混合,进而粉末冶金制备CNTs/Al复合材料,研究球磨工艺对复合材料的微观组织和力学性能的影响。结果表明:球磨过程中不添加过程控制剂所得到的复合材料力学性能优异;随着球磨时间的增加,CNTs逐步分散嵌入铝基体内部,复合材料的组织也变得更加致密均匀。CNTs/Al复合材料的硬度和抗拉强度均随球磨时间的延长持续增加,但是伸长率先增后减。经90min球磨的CNTs/Al复合材料展现了强韧兼备的特点,其硬度和抗拉强度较原始纯铝提高了1.4倍和1.7倍,并且具有17.9%的高伸长率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
陈亚军
师春生
赵乃勤
关键词 碳纳米管力学性能球磨铝基复合材料    
Abstract:Carbon nanotube (CNT) reinforced aluminum matrix composites were fabricated by powder metallurgy route, including in-situ chemical vapor deposition synthesis and ball-milling process. The effect of ball-milling process on the microstructure and mechanical properties of CNT/Al composites was investigated. The results show that the best tensile properties of CNT/Al composites can be achieved without adding any process control agent; with the increment of milling time, CNTs are gradually embedded into Al matrix and the composite microstructure becomes more dense and uniform. The hardness and tensile strength of CNT/Al composites continuously increase with the increase of milling time; however, the elongation firstly increases and then decreases. The composites after 90min of milling show a good balance between strength and ductility, and the hardness and tensile strength of which is 1.4 and 1.7 times higher than that of pure Al respectively, with elongation of 17.9%.
Key wordscarbon nanotube    mechanical property    ball milling    aluminium matrix composites
收稿日期: 2015-12-21      出版日期: 2017-09-16
中图分类号:  TB331  
通讯作者: 杨旭东(1985-),男,讲师,博士,从事铝合金及铝基复合材料研究,联系地址:天津市东丽区中国民航大学北院中欧航空工程师学院(300300),E-mail:xdyangtj@163.com     E-mail: xdyangtj@163.com
引用本文:   
杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
YANG Xu-dong, CHEN Ya-jun, SHI Chun-sheng, ZHAO Nai-qin. Effect of Ball-milling Process on the Microstructure and Mechanical Properties of In-situ Synthesized Carbon Nanotube Reinforced Aluminum Composites. Journal of Materials Engineering, 2017, 45(9): 93-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001550      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/93
[1] 杨益,杨盛良. 碳纳米管增强金属基复合材料的研究现状及展望[J]. 材料导报, 2007, 21(增刊1):182-184. YANG Y, YANG S L. Research status and development prospect of mental matrix composite reinforced by carbon nanotubes[J]. Materials Review, 2007, 21(Suppl 1):182-184.
[2] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology, 2001, 61(13):1899-1912.
[3] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1):41-64.
[4] CHA S I, KIM K T, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17(11):1377-1381.
[5] JIANG L, LI Z, FAN G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50(5):1993-1998.
[6] BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2010, 49(2):533-544.
[7] LAHA T, CHEN Y, LAHIRI D, et al. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming[J]. Composites Part A, 2009, 40(5):589-594.
[8] LIU Z Y, XIAO B L, WANG W G, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing[J]. Carbon, 2014, 69:264-274.
[9] ZHOU S, ZHANG X, DING Z, et al. Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique[J]. Composites Part A, 2007, 38(2):301-306.
[10] ESAWI A M K, MORSI K, SAYED A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A, 2011, 42(3):234-243.
[11] DENG C F, WANG D Z, ZHANG X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering:A, 2007, 444(1):138-145.
[12] 许世娇,肖伯律,刘振宇,等. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7):882-888. XU S J, XIAO B L, LIU Z Y, et al. Microstructures and mechanical properties of CNT/Al composites fabricated by high energy ball-milling method[J]. Acta Metallurgica Sinica, 2012, 48(7):882-888.
[13] 杨旭东, 邹田春, 陈亚军, 等. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44(7):67-72. YANG X D, ZOU T C, CHEN Y J, et al. Fabrication and mechanical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J]. Journal of Materials Engineering, 2016, 44(7):67-72.
[14] POIRIER D, GAUVIN R, DREW R A L. Structural characterization of a mechanically milled carbon nanotube/aluminum mixture[J]. Composites Part A, 2009, 40(9):1482-1489.
[15] HE C N, ZHAO N Q, SHI C S, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials, 2007, 19(8):1128-1132.
[16] YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563:216-220.
[17] WANG J W, YANG X D, ZHANG M, et al. A novel approach to obtain in-situ growth carbon nanotube reinforced aluminum foams with enhanced properties[J]. Materials Letters, 2015, 161:763-766.
[18] YANG X D, ZOU T C, SHI C S, et al. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites[J]. Materials Science and Engineering:A, 2016, 660:11-18.
[19] CHEN B, LI S, IMAI H, et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests[J]. Composites Science and Technology, 2015, 113:1-8.
[20] BOESL B, LAHIRI D, BEHDAD S, et al. Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests[J]. Carbon, 2014, 69:79-85.
[21] KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals:copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(6):329-350.
[1] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[2] 苏再军, 杨树忠, 刘楚明, 杨新华, 刘先兰. Zn对铸态Mg-Y-Nd-Zr合金组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 116-122.
[3] 李娜, 马兆昆, 陈铭, 宋怀河, 李昂, 贾月荣. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45(9): 31-37.
[4] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[5] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[6] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[7] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[8] 靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟. 钇硅酸盐材料力学性能的第一性原理研究[J]. 材料工程, 2017, 45(7): 48-53.
[9] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[10] 刘占勇, 左孝青, 钟子龙, 李威威. 半固态触变挤压对ZA27合金组织和力学性能的影响[J]. 材料工程, 2017, 45(6): 17-23.
[11] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[12] 潘晖, 赵海生. 镍基钎料钎焊K465高温合金大间隙接头组织与性能研究[J]. 材料工程, 2017, 45(5): 86-93.
[13] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[14] 邓凌峰, 彭辉艳, 覃昱焜, 吴义强. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4): 121-127.
[15] 陶静梅, 洪鹏, 陈小丰, 易健宏. 碳纳米管增强铜基复合材料的研究进展[J]. 材料工程, 2017, 45(4): 128-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn