Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 80-85    DOI: 10.11868/j.issn.1001-4381.2015.001562
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TC18钛合金的超塑性行为与变形机制
刁仲驰1,2, 姚泽坤1,2, 申景园1,2, 刘瑞1,2, 郭鸿镇1,2
1. 西北工业大学 材料学院, 西安 710072;
2. 难变形材料锻造技术研究应用中心, 西安 71007
Superplastic Behavior and Deformation Mechanism of TC18 Titanium Alloy
DIAO Zhong-chi1,2, YAO Ze-kun1,2, SHEN Jing-yuan1,2, LIU Rui1,2, GUO Hong-zhen1,2
1. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. ERC of Forging Technique for Less Deformable Materials, Xi'an 710072, China
全文: PDF(4178 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10-5~3.3×10-1s-1时的超塑性拉伸行为和变形机制。结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10-4s-1),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀。在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10-4s-1时取得极大值373%,峰值应力为31.45MPa。TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刁仲驰
姚泽坤
申景园
刘瑞
郭鸿镇
关键词 TC18钛合金超塑性显微组织变形机制    
Abstract:Superplastic tensile behavior and deformation mechanism of TC18 titanium alloy were investigated by high temperature tensile test at 720-950℃ with initial strain rates of 6.7×10-5s-1-3.3×10-1s-1.The results show that under the optimal superplastic deformation condition (890℃ and 3.3×10-4s-1),the maximum elongation is 470%, the peak stress is 17.93MPa and with uniform grain size.Below the phase transus Tβ,the elongation firstly increases and then decreases.A maximum elongation of 373% is obtained at 830℃ and with initial strain rate of 3.3×10-4s-1 and the peak stress is 31.45MPa.The superplastic deformation mechanism of the TC18 titanium alloy in two-phase region is mainly grain rotation and boundary sliding,and the deformation coordination mechanism is dislocation slipping and climbing; the superplastic deformation mechanism in single phase region is intragranular dislocation motion and the deformation coordination mechanism is dynamic recovery and dynamic recrystallization.
Key wordsTC18 titanium alloy    superplasticity    microstructure    deformation mechanism
收稿日期: 2015-12-26      出版日期: 2017-05-17
中图分类号:  TG146.2+3  
通讯作者: 姚泽坤(1952-),男,教授,博士生导师,主要从事宇航材料热成形理论、工艺及组织性能控制、等温近净成形技术、双合金构件的成形技术等研究,E-mail:yzekun@nwpu.edu.cn     E-mail: yzekun@nwpu.edu.cn
引用本文:   
刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
DIAO Zhong-chi, YAO Ze-kun, SHEN Jing-yuan, LIU Rui, GUO Hong-zhen. Superplastic Behavior and Deformation Mechanism of TC18 Titanium Alloy. Journal of Materials Engineering, 2017, 45(5): 80-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001562      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/80
[1] 曲凤盛,周杰,刘旭光,等.TC18钛合金热压缩本构方程及热加工图[J].稀有金属材料与工程,2014,43(1):120-124. QU F S, ZHOU J, LIU X G,et al.Constitutive equation and processing map of thermal deformation for TC18 titanium alloy [J].Rare Metal Materials and Engineering,2014,43(1):120-124.
[2] LIANG H Q,GUO H Z,NING Y Q,et al.Dynamic recrystallization behavior of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J].Materials & Design,2014,63:798-804.
[3] IMAYEV V,GAISIN R,RUDSKOY A,et al.Extraordinary superplastic properties of hot worked Ti-45Al-8Nb-0.2C alloy [J].Journal of Alloys and Compounds,2016,663:217-224.
[4] 丁凌,王志录,孙前江,等.TC6钛合金超塑性变形[J].航空材料学报,2016,36(6):23-28. DING L,WANG Z L,SUN Q J,et al.Superplastic deformation of TC6 alloy [J].Journal of Aeronautical Materials,2016,36(6):23-28.
[5] 付明杰,许慧元,刘佳佳,等.基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究[J].材料工程,2015,43(11):32-38. FU M J,XU H Y,LIU J J,et al.Superplastic deformation behavior of Ti3Al based alloy based on maximum m value and constant strain rate method [J].Journal of Materials Engineering,2015,43 (11):32-38.
[6] 王晓燕,郭鸿镇,姚泽坤.双重退火对TC18钛合金等温锻件组织性能的影响[J].材料热处理学报,2009,30(1):100-103. WANG X Y,GUO H Z,YAO Z K.Effect of duplex annealing on microstructure and properties of TC18 titanium alloy isothermally forged[J].Transactions of Materials and Heat Treatment,2009,30(1):100-103.
[7] 李凯,杨平,沙爱学,等.锻态TC18钛合金棒材中β相组织和织构特征研究[J].金属学报,2014,50(6):707-714. LI K,YANG P,SHA A X,et al.Investigation of microstructure and texture of β phase in a forged TC18 titanium alloy bar[J].Acta Metallurgica Sinica,2014,50(6):707-714.
[8] 黄志涛,锁红波,杨光,等.热处理工艺对电子束熔丝成形TC18钛合金组织性能的影响[J].材料热处理学报,2015,36(12):50-54. HUANG Z T,SUO H B,YANG G,et al.Effect of heat treatment on microstructure and property of TC18 titanium alloy prepared by electron beam rapid manufacturing[J].Transactions of Materials and Heat Treatment, 2015,36(12):50-54.
[9] WANG Y,ZHANG S Q,TIAN X J,et al.High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy[J].Minerals Metallurgy and Materials,2013,20(7):665-670.
[10] LI Z,TIAN X J,TANG H B,et al.Low cycle fatigue behavior of laser melting deposited TC18 titanium alloy[J].Transactions of Nonferrous Metals Society of China,2013,23(9):2591-2597.
[11] SHA W,MALINOV S.Titanium Alloys:Modelling of Microstructure, Properties and Applications[M].Cambridge:Woodhead Publishing,2009:265.
[12] 梁后权,郭鸿镇,宁永权,等.基于软化机制的TC18钛合金本构关系研究[J].金属学报,2014,50(7):871-878. LIANG H Q,GUO H Z,NING Y Q,et al.Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism[J].Acta Metallurgica Sinica,2014,50(7):871-878.
[13] JIA B H,SONG W D,TANG H P,et al.Hot deformation behavior and constitutive model of TC18 alloy during compression[J].Rare Metals,2014,33(4):383-389.
[14] 陈缇萦,聂西安,易丹青,等.TC18钛合金高温变形行为与加工图[J].热加工工艺,2012,41(21):24-28. CHEN T Y,NIE X A,YI D Q,et al.High temperature deformation behavior and processing map of TC18 titanium alloy[J].Hot Working Technology,2012,41(21):24-28.
[15] 胡静,林栋梁.金属间化合物大晶粒超塑性变形机理[J].材料热处理学报,2003,24(3):31-36. HU J,LIN D L.Superplastic deformation mechanism of large-grained intermetallic alloys[J].Transactions of Materials and Heat Treatment,2003,24(3):31-36.
[16] 胡静,林栋梁.金属间化合物大晶粒超塑性行为[J].机械工程材料,2003,27(9):1-4. HU J,LIN D L.Superplasticity of large-grained intermetallics[J].Materials for Mechanical Engineering,2003,27(9):1-4.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[4] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[5] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[6] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[7] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[8] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[9] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[10] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[11] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[12] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[13] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[14] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[15] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn