Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 1-5    DOI: 10.11868/j.issn.1001-4381.2015.01.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
SiC陶瓷真空钎焊接头显微组织和性能
冯广杰, 李卓然, 朱洪羽, 徐慨
哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
Microstructure and Mechanical Property of Vacuum Brazed SiC Ceramic Joint
FENG Guang-jie, LI Zhuo-ran, ZHU Hong-yu, XU Kai
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(1813 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在高真空条件下采用Ti-35Zr-35Ni-15Cu(质量分数/%)钎料对SiC陶瓷进行了钎焊连接,研究了接头界面组织的形成过程以及工艺参数对接头性能的影响.结果表明:钎料与SiC陶瓷发生了复杂的界面反应,生成了多种界面产物.当钎焊温度为960℃,保温时间为10min时,SiC陶瓷侧形成了连续的TiC和Ti5Si3+Zr2Si层,同时Ti5Si3+Zr2Si向钎缝中心生长呈长条状.SiC陶瓷到接头钎缝中心的显微组织依次为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊温度为960℃,保温时间为30min时,长条状的Ti5Si3+Zr2Si贯穿了整个接头.钎焊接头强度随着钎焊温度的升高和钎焊时间的延长都呈现先增大后减小的趋势.当钎焊温度为960℃,保温时间为10min时,接头的剪切强度最高,达到了110MPa.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯广杰
李卓然
朱洪羽
徐慨
关键词 SiC陶瓷真空钎焊显微组织剪切强度    
Abstract:SiC ceramic was brazed in vacuum with Ti-35Zr-35Ni-15Cu (mass fraction/%) filler metal. The formation of interfacial structure and effects of technological parameters on joint shear strength were studied. The results show that a series of interface products form owing to the complex interface reactions between the SiC ceramic and filler metal. When the brazing temperature is 960℃ for 10min, TiC and Ti5Si3+Zr2Si layers form on the SiC ceramic side. Ti5Si3+Zr2Si grows towards to the middle of the joint and shows a long strip shape. Microstructure from SiC ceramic to the middle of the joint can be indicated as SiC/TiC/Ti5Si3+Zr2Si /Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu). When the brazing temperature is 960℃ for 30min, long strip shape Ti5Si3+Zr2Si runs through the entire joint. Shear strength of the brazed joint firstly increases then decreases with the rising of the brazing temperature and holding time. The maximum shear strength of the joint with 110MPa is obtained at brazing temperature 960℃ for 10min.
Key wordsSiC ceramic    vacuum brazing    microstructure    shear strength
收稿日期: 2013-05-07     
1:  TG454  
基金资助:国家自然科学基金资助项目(51075101)
通讯作者: 李卓然(1971-),男,博士,副教授,主要从事新材料及异种材料连接方面的研究,联系地址:黑龙江省哈尔滨市南岗区哈尔滨工业大学材料科学与工程学院(150001),lizr@hit.edu.cn     E-mail: lizr@hit.edu.cn
引用本文:   
冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
FENG Guang-jie, LI Zhuo-ran, ZHU Hong-yu, XU Kai. Microstructure and Mechanical Property of Vacuum Brazed SiC Ceramic Joint. Journal of Materials Engineering, 2015, 43(1): 1-5.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.01.001      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I1/1
[1] XIE Y P, CHENG L F, LI L J, et al. Fabrication of laminated SiCw/SiC ceramic composites by CVI[J]. Journal of the European Ceramic Society, 2013, 33(10):1701-1706.
[2] 张志金, 于晓东, 王扬卫, 等. 三维网络碳化硅多孔陶瓷的制备[J]. 航空材料学报, 2012, 32(4): 57-61.ZHANG Zhi-jin, YU Xiao-dong, WANG Yang-wei,et al. Preparation of reaction-formed porous SiC ceramics[J]. Journal of Aeronautical Materials, 2012, 32(4):57-61.
[3] WANG W, LIAN J B, RU H Q. Pressureless sintered SiC matrix toughened by in situ synthesized TiB2: process conditions and fracture toughness[J]. Ceramics International, 2012, 38(3):2079-2085.
[4] 杨利伟, 鲍赫. 空间光学遥感器SiC反射镜连接技术综述 [J]. 光机电信息, 2010, 27(12): 56-61.YANG Li-wei, BAO He. Summarization of joining technologies of SiC mirror of space optical remote sensor[J]. OME Information, 2010, 27(12):56-61.
[5] XIONG H P, LI X H, MAO W, et al. Wetting behavior of Co based active alloys on SiC and the interfacial reactions[J]. Materials Letters, 2003, 57(22-23):3417-3421.
[6] LI Z R, WANG Z Z, WU G D, et al. Microstructure and mechanical properties of ZrB2-SiC ultra-high-temperature ceramic composites joint using TiZrNiCu filler[J]. Science and Technology of Welding and Joining, 2011, 16(8):697-701.
[7] 李卓然,王征征,吴广东,等.ZrB2高温陶瓷钎焊接头的界面组织和性能[J]. 材料工程, 2010, (10):73-76.LI Zhuo-ran, WANG Zheng-zheng, WU Guang-dong, et al. The microstructure and mechanical property of the ZrB2-based ultra-high-temperature ceramic composites joints[J]. Journal of Materials Engineering, 2010, (10):73-76.
[8] 宋昌宝, 林铁松, 何鹏, 等. ZrC-SiC复合陶瓷扩散焊接头界面组织及力学性能 [J]. 硅酸盐学报, 2014, 42(3):275-279.SONG Chang-bao, LIN Tie-song, HE Peng,et al. Microstructure and mechanical property of diffusion bonded ZrC-SiC joint[J]. Journal of the Chinese Ceramic Society, 2014, 42(3):275-279.
[9] LOCATELLI M R, TOMSIA A P, NAKASHIMA K, et al. New strategies for joining ceramics for high-temperature applications[J]. Key Engineering Materials, 1995,111-112:157-190.
[10] WANG X Z, WANG J, WANG H. Synthesis of a novel preceramic polymer (V-PMS) and its performance in heat-resistant organic adhesives for joining SiC ceramic[J]. Journal of the European Ceramic Society, 2012, 32(12):3415-3422.
[11] 陈波,熊华平,程耀永,等.采用Ag-Cu-Ti钎料钎焊Cf/SiC接头的组织和强度[J]. 材料工程, 2010, (10):27-31. CHEN Bo, XIONG Hua-ping, CHENG Yao-yong,et al. Microstructure and strength of Cf/SiC joints with Ag-Cu-Ti brazing fillers[J]. Journal of Materials Engineering, 2010, (10):27-31.
[12] YANG Z W, ZHANG L X, TIAN X Y, et al. Interfacial microstructure and mechanical properties of TiAl and C/SiC joint brazed with TiH2-Ni-B brazing powder[J]. Materials Characterization, 2013, 79:52-59.
[13] 刘岩,黄政仁,刘学建,等.采用Ag-Cu-In-Ti焊料连接碳化硅陶瓷[J]. 无机材料学报, 2009, 24(4):817-820. LIU Yan, HUANG Zheng-ren, LIU Xue-jian, et al. Brazing of SiC ceramics using Ag-Cu-In-Ti filler metal[J]. Journal of Inorganic Materials, 2009, 24(4):817-820.
[14] SINGH M, ASTHANA R, SHPARGEL T P. Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers[J]. Materials Science and Engineering: A, 2008, 498(1-2):19-30.
[15] LIN G B, HUANG J H, ZHANG H. Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag-Cu-Ti short carbon fibers[J]. Journal of Materials Processing Technology, 2007, 189(1-3):256-261.
[1] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
[2] 邵长斌, 熊江涛, 孙福, 张赋升, 李京龙. TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究[J]. 材料工程, 2014, 0(9): 26-31.
[3] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[4] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[5] 周静怡, 赵文侠, 郑真, 曲士昱, 贾新云, 郑运荣. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, 0(8): 90-96.
[6] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[7] 田俊, 薛顺, 吴铖川, 成国光, 周国治, 王文虎, 盛伟. 弹簧钢热处理前后显微组织对抗腐蚀性能的影响[J]. 材料工程, 2014, 0(4): 18-25.
[8] 王少华, 马志锋, 张显峰, 孙刚, 冯朝辉, 李伟, 陆政. Al-Zn-Mg-Cu-Zr-0.5Er合金型材组织性能研究[J]. 材料工程, 2014, 0(3): 27-33.
[9] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[10] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
[11] 耿波, 张路, 范念青, 夏志新, 刘江南. 水蒸气温度和流量对T91钢氧化行为的影响[J]. 材料工程, 2014, 0(1): 52-57.
[12] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
[13] 陈雨来, 董长征, 蔡庆伍, 万德成, 李亮, 齐越. Mo和Ni对高强无碳化物贝氏体钢组织转变与力学性能的影响[J]. 材料工程, 2013, 0(9): 16-21.
[14] 李权, 杨锦, 蒋显全, 程仁菊, 刘文君, 曾斌. AZ系列镁合金热模拟挤压组织均匀性研究[J]. 材料工程, 2013, 0(9): 64-68.
[15] 杨金龙, 李思宇, 叶凌英, 邓运来. Li对Al-3.5Cu-1.5Mg合金组织与性能的影响[J]. 材料工程, 2013, 0(5): 23-27,32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn