Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 18-23    DOI: 10.11868/j.issn.1001-4381.2015.01.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料
刘胜明, 汤爱涛, 陈敏, 赵子鹏
重庆大学 材料科学与工程学院, 重庆 400044
Al2O3-TiC Reinforced Ferro-matrix Composite by In -situ Synthesis from Ilmenite
LIU Sheng-ming, TANG Ai-tao, CHEN Min, ZHAO Zi-peng
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(3677 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用钛铁矿铝热碳热原位还原技术成功制备了Al2O3-TiC增强铁基复合材料.通过XRD,SEM和力学性能检测方法分析了钛铁矿原位合成和添加合成两种方式对Al2O3-TiC增强铁基复合材料的组织和力学性能的影响.结果表明:利用钛铁矿合成的铁基复合材料的增强相为Al2O3, MgAl2O4, TiC和Fe相,添加合成过程中会发生一些硬质相TiC被氧化的现象.钛铁矿原位合成Al2O3-TiC增强铁基复合材料的基体组织呈粗大的块条状分布;添加合成的复合材料的铁基体以块状均匀分布.制备的Al2O3-TiC增强铁基复合材料的性能比较优良.材料的最佳综合力学性能为抗弯强度937MPa,维氏硬度532.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘胜明
汤爱涛
陈敏
赵子鹏
关键词 铁基复合材料钛铁矿Al2O3-TiC组织性能    
Abstract:Al2O3-TiC particles reinforced ferro-matrix composite were successfully prepared by in -situ synthesis from ilmenite. The effects of in -situ synthesis and adding synthesis on microstructures and properties were analyzed by using XRD, SEM and mechanical testing methods. The results show that the reinforcing phases of the synthesis ferro-matrix composite comprise of Al2O3, MgAl2O4, TiC and Fe. Some of the TiC phases are oxidized during the synthesis process. The iron matrix of in -situ synthetic composite is distributed as thick block strip and the iron matrix of adding synthetic composite is in a uniform distribution. The properties of synthetic material are excellent. The optimal flexural strength and Vickers hardness are 937MPa and 532, respectively.
Key wordsferro-matrix composite    ilmenite    Al2O3-TiC    microstructure    property
收稿日期: 2013-04-09     
1:  TB331  
基金资助:国家高技术研究发展计划(863计划)项目(2008AA031101);重庆大学研究生创新基金(CDJXS10131161)
通讯作者: 汤爱涛(1963-),女,教授,博士,从事镁合金、复合材料的研究,联系地址:重庆市重庆大学材料科学与工程学院(400044),tat@cqu.edu.cn     E-mail: tat@cqu.edu.cn
引用本文:   
刘胜明, 汤爱涛, 陈敏, 赵子鹏. 钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料[J]. 材料工程, 2015, 43(1): 18-23.
LIU Sheng-ming, TANG Ai-tao, CHEN Min, ZHAO Zi-peng. Al2O3-TiC Reinforced Ferro-matrix Composite by In -situ Synthesis from Ilmenite. Journal of Materials Engineering, 2015, 43(1): 18-23.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.01.004      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I1/18
[1] 张静, 潘复生, 陈万志. 铁基复合材料的现状和发展[J]. 材料导报, 1995, 9(1): 67-71.ZHANG Jing, PAN Fu-sheng, CHEN Wan-zhi. Development and present status of ferro-matrix composite[J]. Materials Review, 1995, 9(1): 67-71.
[2] 高跃岗, 姚秀荣, 刘兆晶, 等. 国外铁基复合材料的发展与应用[J]. 合肥工业大学学报, 2006, 29(4): 431-436.GAO Yue-gang, YAO Xiu-rong, LIU Zhao-jing, et al. Development and application of ferrous matrix composites in foreign countries[J]. Journal of Hefei University of Technology, 2006, 29(4): 431-436.
[3] 陶杰, 赵玉涛, 潘蕾. 金属基复合材料制备新技术导论[M]. 北京:化学工业出版社, 2007. 52-76.TAO Jie, ZHAO Yu-tao, PAN Lei. Introduction to New Technology of Metal Matrix Composites[M]. Beijing:Chemical Industry Press, 2007. 52-76.
[4] 李江, 潘裕柏, 宁金威. 氧化铝陶瓷低温烧结的研究现状与发展前景[J]. 中国陶瓷, 2001, 37(5): 41-45.LI Jiang, PAN Yu-bai, NING Jin-wei. Low temperature sintering of alumina ceramics[J]. China Ceramics, 2001, 37(5):41-45.
[5] 周玉成, 魏世忠, 徐流杰, 等. Al2O3颗粒增强钢铁基复合材料的研究进展[J]. 热加工工艺, 2010, 39(20): 87-90.ZHOU Yu-cheng, WEI Shi-zhong, XU Liu-jie, et al. Research progress of particles reinforced steel based composite[J]. Hot Working Technology, 2010, 39(20): 87-90.
[6] BRIAN R. The processing of metal matrix composites-an overview[J]. Journal of Materials Processing Technology, 1997, 63(1-3): 339-353.
[7] NURI D. Titanium carbide based composites for high temperature applications[J]. Journal of the European Ceramic Society, 1999, 19(13-14): 2415-2419.
[8] XIE Xian-qing. Thermal expansion properties of TiC particle reinforced ZA43 matrix composite[J]. Materials & Design, 2001, 11(2): 157-162.
[9] 艾桃桃. 颗粒强化金属基复合材料的原位合成工艺[J]. 稀有金属快报, 2008, 27(7): 1-6.AI Tao-tao. In situ synthesis processes of particle reinforced metal matrix composites[J]. Rare Metal Letters, 2008, 27(7):1-6.
[10] 杨佳, 李奎, 汤爱涛. 钛铁矿资源综合利用现状与发展[J]. 材料导报, 2004, 18(8): 44-46. YANG Jia, LI Kui, TANG Ai-tao. Comprehensive utilization of ilmenite resources: present status and future prospects[J]. Materials Review, 2004, 18(8): 44-46.
[11] RAZAVI M, RAJABI-ZAMANI A H, RAHIMIPOUR M R, et al. Synthesis of Fe-TiC-Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation[J]. Ceramics International, 2011, 37(2): 443-449.
[12] KHOLGHY M, KHARATYAN S, EDRIS H. SHS/PHIP of ceramic composites using ilmenite concentrate[J]. Journal of Alloys and Compounds, 2010, 502(2): 491-494.
[13] LIU Sheng-ming, TANG Ai-tao, ZHAO Zi-peng.Research on ferro-matrix composite reinforced by Al2O3-TiC/TiCN particles[J]. Journal of Functional Materials, 2014, 45(1): 01010-01014.
[14] 范瑞瑞, 张瑞, 李炎, 等. 粉末冶金法制备A12O3颗粒增强Fe基复合材料[J]. 热加工工艺, 2011, 40(24): 120-123. FAN Rui-rui, ZHANG Rui, LI Yan, et al. Fabrication of Fe matrix composite reinforced with A12O3 particles by powder metallurgical method[J]. Hot Working Technology, 2011, 40(24): 120-123.
[15] ALAMOLHODA S, HESHMATI-MANESH S, ATAIE A. Role of intensive milling in mechano-thermal processing of TiAl/Al2O3 nano-composite[J]. Advanced Powder Technology, 2012, 23(3): 343-348.
[16] WANG Z, LIU X. In-situ synthesis of Al(TiC+α-Al2O3) and Al(TiAl3+TiC+α-Al2O3) alloys by reactions between Al, TiO2 and C in liquid aluminum[J]. Journal of Materials Science, 2005, 40(4): 1047-1050.
[17] FAN R H, LIU B, ZHANG J D, et al. Kinetic evaluation of combustion synthesis 3TiO2+7Al→3TiAl +2Al2O3 using non-isothermal DSC method[J]. Materials Chemistry and Physics, 2005, 91(1): 140-145.
[18] AIGNER K, LENGAUER W, ETTMAYER P. Interactions in iron-based cermet systems[J]. Journal of Alloys and Compounds, 1997, 262-263: 486-491.
[19] UMANSKII A P. Titanium carbonitride composite with iron-chromium binder[J]. Powder Metallurgy and Metal Ceramics, 2001, 40(11-12): 637-640.
[1] 景红霞, 李巧玲, 叶云, 裴王军. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43(7): 38-42.
[2] 林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
[3] 李龙, 祝志超, 张心金, 刘会云. 利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J]. 材料工程, 2015, 43(7): 62-67.
[4] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[5] 杨海青, 李青, 肖程波, 胡聘聘, 林山峰. Re及时效时间对耐腐蚀镍基定向合金组织和持久寿命的影响[J]. 材料工程, 2015, 43(6): 31-37.
[6] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[7] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[8] 李小强, 敖敬培, 李子阳, 李力, 屈盛官. CuMnNiCo钎料钎焊MGH956合金接头组织及力学性能研究[J]. 材料工程, 2015, 43(5): 21-26.
[9] 杨可, 杨克, 包晔峰. 氮合金化堆焊硬面合金的耐腐蚀性能研究[J]. 材料工程, 2015, 43(5): 33-37.
[10] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[11] 卢林刚, 陈英辉, 程哲, 杨守生, 邵高耸. 新型无卤膨胀/MH阻燃环氧树脂的制备及阻燃性能[J]. 材料工程, 2015, 43(5): 50-55.
[12] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[13] 卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
[14] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[15] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn