Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 49-53    DOI: 10.11868/j.issn.1001-4381.2015.01.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
疏水/超疏水船用铝合金表面制备及其耐久性
连峰, 王增勇, 张会臣
大连海事大学 交通运输装备与海洋工程学院, 辽宁 大连 116026
Preparation of Hydrophobic/Superhydrophobic Warship Aluminium Alloy Surface and Its Durability
LIAN Feng, WANG Zeng-yong, ZHANG Hui-chen
College of Transportation Equipment and Ocean Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
全文: PDF(2149 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法将SiO2纳米粒子涂覆在抛光和经激光刻蚀的船用铝合金表面,制备疏水/超疏水铝合金表面.利用使试样负载并在砂纸上摩擦滑行的方法测试疏水/超疏水表面的耐久性,结果表明:抛光表面的接触角随SiO2浓度的增高而增大,最大可达150.8°,但表面对水滴具有强黏附力.当摩擦滑行距离达到10m时,接触角小于铝合金表面原始接触角72.3°;激光刻蚀的网格和点阵微结构表面既具有超疏水特性又呈现出低黏附力;且网格表面的接触角更大,最大达155.4°,滚动角更小,最小仅为0.34°.当摩擦滑行距离达到10m时,表面依然疏水,且网格微结构的耐久性更强.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
连峰
王增勇
张会臣
关键词 疏水超疏水接触角滚动角    
Abstract:Nano-SiO2 powder was coated on the polished and laser etched surface by the sol-gel and dip-coating method to prepare hydrophobic/superhydrophobic warship aluminium alloy surface. The durability of the hydrophobic/superhydrophobic surface was tested by using the method of the sample load and friction slide on sand paper. The results show that the contact angle of polished surface increases with increasing SiO2 concentration up to 150.8°, but the surface has high adhesive force for the droplet. When the length of sliding reaches 10m, the contact angle is 72.3° less than the original. The surface fabricated by laser etched grid or dot microstructures exhibits both superhydrophobic and low adhesive force. The grid surface has greater contact angle as high as 155.4°, and smaller roll angle, the minimum is only 0.34°. When the length of sliding reaches 10m, the surface is still hydrophobic, and the grid microstructure has greater durability.
Key wordshydrophobic    superhydrophobic    contact angle    roll angle
收稿日期: 2013-07-01      出版日期: 2015-01-20
中图分类号:  TH117.1  
基金资助:辽宁省工业攻关计划项目(2012220006);国家自然科学基金资助项目(51275064,50975036);中央高校基本科研业务费专项资金(3132013311)
通讯作者: 连峰(1965-),女,教授,博士,硕士生导师,研究方向为表面改性技术,摩擦学及其控制技术,先进制造技术,联系地址:辽宁省大连市甘井子区凌海路1号大连海事大学交通运输装备与海洋工程学院 (116026),lianfeng1357@163.com     E-mail: lianfeng1357@163.com
引用本文:   
连峰, 王增勇, 张会臣. 疏水/超疏水船用铝合金表面制备及其耐久性[J]. 材料工程, 2015, 43(1): 49-53.
LIAN Feng, WANG Zeng-yong, ZHANG Hui-chen. Preparation of Hydrophobic/Superhydrophobic Warship Aluminium Alloy Surface and Its Durability. Journal of Materials Engineering, 2015, 43(1): 49-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.01.009      或      http://jme.biam.ac.cn/CN/Y2015/V43/I1/49
[1] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京: 化学工业出版社, 2007.JIANG L,FENG L. Biomimic Intelligent Nanostructured Interfacial Materials[M]. Beijing: Chemical Industry Press,2007.
[2] FENG L, ZHANG Y N, XI J M, et al. A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119.
[3] 强小虎,张红霞,王彦平,等.强黏附性超疏水氧化铝的表面结构和黏附机理[J]. 材料工程, 2013, (3): 55-60.QIANG X H, ZHANG H X, WANG Y P, et al. Structure and adhesive mechanism of superhydrophobic alumina surface with high adhesive force[J].Journal of Materials Engineering, 2013, (3): 55-60.
[4] GAO X F, JIANG L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013):36.
[5] 豆照良,汪家道,余锋,等.一种二元复合结构聚合物减阻涂层的制备[J].清华大学学报:自然科学版,2011,51(12):1844-1848.DOU Z L, WANG J D, YU F, et al. Fabrication of binary structured surface for drag reduction[J].Journal of Tsinghua University:Science and Technology ,2011,51(12):1844-1848.
[6] 程宇锋,蔡文俊,孙国亮.船舶低表面能防污涂料研究进展[J].化学工程师,2010,180(9) : 36-38.CHENG Y F, CAI W J, SUN G L. Development of shipping low surface energy antifouling paints[J]. Chemical Engineer, 2010,180(9) : 36-38.
[7] CARMAN M L, ESTES T G, FEINBERG A W, et al. Engineered antifouling microtopographies-correlating wettability with cell attachment[J]. Biofouling: the Journal of Bioadhesion and Biofilm Research,2006, 22(1): 11-21.
[8] MURASE H, NANISHI K, KOGURE H, et al. Interactions between heterogeneous surfaces of polymers and water[J]. Appl Polym Sci, 1994, 54(13):2051-2060.
[9] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans Faraday Soc,1944, 40(5):546-511.
[10] 王景明,王春,王明超,等.人造玫瑰花花瓣的微结构分布与水滴黏附性质的关系[J].高等学校化学学报,2011,32(8):1807-1811. WANG J M,WANG C,WANG M C, et al. Effects of the distribution of micropapillae with nanofolds on the adhesive property of artificial red rose petals[J]. Chemical Journal of Chinese Universities,2011,32(8):1807-1811.
[11] JIN M H, FENG X J, XI J M, et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J].Macromolecular Rapid Communications, 2005, 26(22): 1805-1809.
[12] VERHO T,BOWER C,ANDREW P,et al. Mechanically durable superhydrophobic surfaces[J]. Adv Mater,2011,23(5): 673-678.
[13] COTTIN-BIZONNE C, BARRAT J L, BOCQUET L, et al. Low-friction flows of liquid at nanopatterned interfaces[J]. Nature Materials, 2003, 2(4):237-240.
[14] 何金梅,屈孟男.磨损增强型超疏水材料的制备及性能研究[J].摩擦学学报,2012,32(3):215-220. HE J M,QU M N. Fabrication and wear-resistance of abrasion-enhanced superhydrophobic materials[J]. Tribology,2012,32(3):215-220.
[15] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem,1936,28(8): 988-994.
[16] YOSHIMITSU Z, NAKAJIMA A, WATANABE T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002,18(15):5818-5822.
[1] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 侯根良, 李浩, 毕松, 苏正安, 刘朝辉, 林阳阳, 汤进. 基于不同粒径SiO2的疏水薄膜制备及其性能[J]. 材料工程, 2020, 48(2): 32-37.
[4] 何照荣, 揭晓华, 连玮琦. 电火花加工制备铜基微纳层次结构及其疏水性能[J]. 材料工程, 2020, 48(1): 144-149.
[5] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[6] 占彦龙, 李文, 李宏, 胡良云. 氧化还原法制备超疏水表面及其防覆冰性能[J]. 材料工程, 2019, 47(1): 58-63.
[7] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[8] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[9] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[10] 刘洪丽, 邓青沂, 褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2): 22-26.
[11] 黎醒, 蒋炳炎, 吕辉, 周明勇, 翁灿. 疏水植物表面微纳复合结构电铸模芯的制备[J]. 材料工程, 2018, 46(2): 66-72.
[12] 李杰, 王超磊, 刘玉德, 高东明, 张会臣. 激光微织构与自组装对铝合金表面润湿性的影响[J]. 材料工程, 2018, 46(1): 53-60.
[13] 谭娜, 邢志国, 王海斗, 王晓丽, 金国, 徐滨士. 基于仿生原理的几何构型及其功能性的研究进展[J]. 材料工程, 2018, 46(1): 133-140.
[14] 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65.
[15] 蒋晓, 郭瑞光, 唐长斌. 硬脂酸改性镁合金铈钒转化膜的制备与性能[J]. 材料工程, 2017, 45(5): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn