Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 54-58    DOI: 10.11868/j.issn.1001-4381.2015.01.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Super304H抗碱金属硫酸盐的腐蚀行为
李萍, 李安娜, 庞胜娇, 赵杰, 李廷举
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Corrosion Behavior of Super304H with Alkali Resistance Metal Sulfate
LI Ping, LI An-na, PANG Sheng-jiao, ZHAO Jie, LI Ting-ju
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(2290 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用XRD,SEM和EMPA等分析方法研究了表面喷涂碱金属硫酸盐的Super304H在750℃空气中的耐高温腐蚀特性.结果表明:Super304H在腐蚀初期发生高温氧化,动力学曲线遵循抛物线规律,表面生成相对致密且具有保护性作用的铁/铬氧化膜;延长腐蚀时间,生成挥发性腐蚀产物Na4(CrO4)(SO4);氧化膜增厚,变得疏松多孔,近基体表面处细小孔隙萌生,并聚集长大成微裂纹、微孔洞,基体内部发生内硫化.分析认为:低熔点共晶体Na2O·Na2SO4的形成以及Cr2O3在硫酸盐中的碱性熔融促进了腐蚀加速与持续.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李萍
李安娜
庞胜娇
赵杰
李廷举
关键词 热腐蚀碱金属硫酸盐低熔点共晶熔体    
Abstract:The corrosion behavior of Super304H coated alkali metal sulfate at 750℃ was investigated by means of XRD, SEM and EMPA. The results show that high-temperature oxidation mainly occurs at the earlier corrosion stage and the kinetics curves follow a parabolic law. Moreover, the compact and protective Fe/Cr oxide films form on the surface of the sample. Corrosion time is prolonged, and volatile corrosion product Na4(CrO4)(SO4) is produced. The oxide films are thickened and become loose as well as porous. Meanwhile, fine porosity initiates near base material surface, gathers and grows into micro-cracks, micro-pores, and thus internal sulfidation and micro-defects occur inside the base material. It is concluded that the formation of low melting point eutectic Na2O·Na2SO4 and the basic fluxing of Cr2O3 in molten Na2SO4 accelerate the development of corrosion process.
Key wordshot corrosion    alkali metal sulfate    low melting point eutectic
收稿日期: 2013-11-29     
1:  TG172  
基金资助:国家自然科学基金联合基金重点项目(51134013);国家自然科学基金资助项目(51171037)
通讯作者: 李萍(1969-),女,博士,副教授,主要从事材料无损表征与评价方面研究工作,联系地址:辽宁省大连市凌工路2号大连理工大学材料科学与工程学院(116024),liping69@dlut.edu.cn     E-mail: liping69@dlut.edu.cn
引用本文:   
李萍, 李安娜, 庞胜娇, 赵杰, 李廷举. Super304H抗碱金属硫酸盐的腐蚀行为[J]. 材料工程, 2015, 43(1): 54-58.
LI Ping, LI An-na, PANG Sheng-jiao, ZHAO Jie, LI Ting-ju. Corrosion Behavior of Super304H with Alkali Resistance Metal Sulfate. Journal of Materials Engineering, 2015, 43(1): 54-58.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.01.010      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I1/54
[1] 林富生,王治政,王宝忠. 中国电站用耐热钢及合金的研制、应用与发展[J]. 动力工程学报, 2010, 30(4): 235-244.LIN F S, WANG Z Z, WANG B Z. Research, application and development of domestic heat-resistant steels and alloys for power plants[J]. Journal of Chinese Society of Power Engineering, 2010,30(4): 235-244.
[2] VISWANANTHAN R, HENRY J F, TANZOSH J,et al. U S program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005, 14(3): 281-292.
[3] 张知翔,成丁南,边宝,等.水冷壁材料在模拟烟气中的高温腐蚀研究[J].材料工程, 2011, (4): 14-19.ZHANG Z X, CHENG D N, BIAN B, et al. Study on high temperature corrosion of water wall materials in simulated furnace atmosphere[J]. Journal of Materials Engineering, 2011,(4): 14-19.
[4] CASTELLO P, GUTTMANN V, FARR N,et al. Laboratory-simulated fuel-ash corrosion of super heater tubes in coal-fired ultra-supercritical-boilers[J]. Materials and Corrosion, 2000, 51(11): 786-790.
[5] GAYLORD D S, HOWARD W S. Introduction of an advanced superheater alloy for coal-fired boilers. Corrosion 2000.Houston:NACE International, 2000.256.
[6] 谢锡善,赵双群,董建新,等.超超临界电站用Inconel 740镍基合金的组织稳定性及其改型研究[J]. 动力工程学报, 2011, 31(8): 638-643.XIE X S, ZHAO S Q, DONG J X,et al. Structural stability and improvement of Inconel alloy 740 for ultra supercritical power plants[J]. Journal of Chinese Society of Power Engineering,2011, 31(8): 638-643.
[7] GOSIA S B, FLREZ D M, MAIER J,et al. Nickel-base superalloys for ultra-supercritical coal-fired power plants: fireside corrosion. Laboratory studies and power plant exposures[J]. Fuel, 2013, 108: 521-533.
[8] 张林伟,王鲁,王全胜,等.真空预氧化对冷喷涂CoNiCrAlY涂层组织及热腐蚀性能的影响[J]. 材料工程, 2013, (4): 12-16.ZHANG L W, WANG L,WANG Q S,et al. Effect of vacuum pre-oxidation on microstructure and hot corrosion behavior of CoNiCrAlY coating prepared by cold spray[J]. Journal of Materials Engineering, 2013,(4): 12-16.
[9] 王俪篥,朱丽慧,王起江.Super 304H 耐热钢的强化机理[J]. 材料热处理学报, 2011, 32(6): 127-131.WANG L L,ZHU L H,WANG Q J. Strengthening mechanism of Super 304H heat-resistant steel[J]. Trans Mater Heat Treat, 2011, 32(6): 127-131.
[10] ISEDA A, OKADA H, SEMBA H, et al. Long term creep properties and microstructure of SUPER304H,TP347HFG and HR3C for A-USC boilers[J]. Energy Materials: Materials Science and Engineering for Energy Systems, 2007, 2(4): 199-206.
[11] VISWANATHAN R,SARVER J,TANZOSH J M, et al.Boiler materials for ultra-supercritical coal power plants-steamside oxidation[J].Journal of Materials Engineering and Performance, 2006, 15(3): 255-274.
[12] 周一工.我国动力用煤特点和燃煤电站锅炉环保措施[J]. 上海电机学院学报, 2007, (1):13-19. ZHOU Y G. Features of Chinese coal used for drive and environmental protection for coal fuel power plant boilers[J]. Journal of Shanghai Dianji University, 2007, (1): 13-19.
[13] SHI L Q. On the possibility of a Na2SO4-Na2O eutectic melt developing on metals coated with Na2SO4 deposit in oxygen/air at intermediate temperatures[J]. Corrosion Science, 1995, 37(8): 1281-1287.
[14] FRYBURG G C, KOHL F L, STEARNS C A. Chemical reactions involved in the initiation of hot corrosion of IN-738[J]. J Electrochem Soc, 1984, 131(12): 2985-2997.
[15] 包新华.熔盐相图智能数据库研究及其应用[D].上海:上海大学, 2005. BAO X H. Study and application of intelligent database of phase diagram of molten salt systems[D]. Shanghai: Shanghai University, 2005.
[16] KNUTSSON P, LAI H P, STILLER K. A method for investigation of hot corrosion by gaseous Na2SO4 [J]. Corrosion Science, 2013, 73: 230-236.
[17] FANG W C, RAPP R A. Electrochemical reactions in a pure Na2SO4 melt[J]. J Electrochem Soc, 1983, 130(12): 2335-2341.
[1] 何箐, 屈轶, 汪瑞军, 王伟平. DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J]. 材料工程, 2014, 0(5): 66-72.
[2] 张林伟, 王鲁, 王全胜, 宁先进. 真空预氧化对冷喷涂CoNiCrAlY涂层组织及热腐蚀性能的影响[J]. 材料工程, 2013, 0(4): 12-16.
[3] 席艳君, 刘泳俊, 王志新, 卢金斌. TiAl涂层对Ti3Al合金腐蚀行为的影响[J]. 材料工程, 2009, 0(12): 49-52.
[4] 张鹏飞, 李建平, 蔡妍, 陆峰. K3合金复合涂层高温防护性能研究[J]. 材料工程, 2007, 0(10): 68-71.
[5] 李建平, 吴凤筠, 李伟光. DZ125合金HY3涂层防护性能研究[J]. 材料工程, 1998, 0(7): 12-14.
[6] 张建苏. 燃油硫含量对K3合金热腐蚀的影响[J]. 材料工程, 1997, 0(8): 40-41.
[7] 全毅. 预氧化对涂层抗低温热腐蚀性能的影响[J]. 材料工程, 1997, 0(8): 42-42.
[8] 徐劲松. 地面燃机涡轮叶片和导向叶片涂层的应用[J]. 材料工程, 1997, 0(2): 36-37.
[9] 王洪媛, 郑运荣. WJ5发动机导向叶片失效分析[J]. 材料工程, 1997, 0(12): 42-44.
[10] 曾潮流, 沈华清, 吴维, 朱圣龙, 郭建亭. Ni3Al金属间化合物及溅射CoCrAlY涂层的高温热腐蚀[J]. 材料工程, 1994, 0(10): 35-37.
[11] 曾潮流, 张鉴清, 吴维韬. 溅射CoCrAlY涂层对NiAl金属间化合物热腐蚀性能的影响[J]. 材料工程, 1993, 0(4): 1-3,41.
[12] 曾潮流, 张鉴清, 吴维韬. Ni-Al基金属间化合物的高温腐蚀与防护[J]. 材料工程, 1993, 0(10): 26-29.
[13] 陈汉存, 刘正义, 陈华平, 庄育智. ZrO2涂层成分对其抗热腐蚀能力的影响[J]. 材料工程, 1992, 0(6): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn