Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 89-95    DOI: 10.11868/j.issn.1001-4381.2015.01.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为
杨东平1, 胥聪敏1, 罗金恒2, 王珂2, 李辉辉1
1. 西安石油大学 材料科学与工程学院 材料加工工程重点实验室, 西安 710065;
2. 中国石油集团石油管工程技术研究院 石油管力学和环境行为重点实验室, 西安 710065
Stress Corrosion Cracking Behavior of X80 Pipeline Steel with Design Factor of 0.8 in Near-neutral pH Value Solutions
YANG Dong-ping1, XU Cong-min1, LUO Jin-heng2, WANG Ke2, LI Hui-hui1
1. Key Laboratory of Materials Processing Engineering, College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2. Key Laboratory for Mechanical and Environmental Behavior of Tubular Goods, CNPC Tubular Goods Research Institute, Xi'an 710065, China
全文: PDF(4776 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用慢应变速率拉伸 (SSRT) 实验研究了X80管线钢及其焊缝在近中性的NS4溶液中的应力腐蚀行为与敏感性.结果表明:X80管线钢及其焊缝主要是塑性损失,且焊缝塑性损失大于母材;X80管线钢及其焊缝在空气中属于典型的韧性断裂特征,在NS4溶液中属于穿晶应力腐蚀开裂(TGSCC),在NS4溶液中母材和焊缝断口中间区域比断口边缘区域表现出更明显的脆性断裂特征.电位在大于-749.86mV时,SCC机制为阳极溶解机制,在-749.86~-839.19mV之间时为阳极溶解和氢脆混合机制,小于-839.19mV时为氢脆机制.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨东平
胥聪敏
罗金恒
王珂
李辉辉
关键词 X80管线钢应力腐蚀开裂慢应变速率拉伸    
Abstract:Stress corrosion cracking (SCC) behavior and sensitivity of X80 pipeline steel and weld joint in NS4 solutions were investigated using slow strain rate tension (SSRT) test. The results show that X80 pipeline steel and weld joint appear mainly plastic damage. The plastic damage of weld joint is higher than that of base metal. The fracture mode of X80 pipeline steel and weld joint exhibits typical ductile fracture in the air, and the transgranular SCC in NS4 solution. Both base metal and weld joint fracture's middle areas of X80 pipeline steel exhibit more obvious brittle fracture feature than that of the edge area in NS4 solutions. The corrosion mechanism of X80 steel is anodic dissolution(AD) above -749.86mV, and the mixed mechanism of AD and hydrogen embrittlement(HE) between -749.86-839.19mV, and HE mechanism below -839.19mV.
Key wordsX80 pipeline steel    stress corrosion cracking    slow strain rate tension
收稿日期: 2014-03-18     
1:  TG172  
基金资助:陕西省教育厅专项科研计划项目(2013JK0895);陕西省重点学科专项资金资助项目(ys37020203)
通讯作者: 胥聪敏(1977-),女,博士,副教授,主要从事材料腐蚀及防护方面的研究,联系地址:陕西省西安市雁塔区电子二路18号西安石油大学材料科学与工程学院(710065),cmxu@xsyu.edu.cn     E-mail: cmxu@xsyu.edu.cn
引用本文:   
杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
YANG Dong-ping, XU Cong-min, LUO Jin-heng, WANG Ke, LI Hui-hui. Stress Corrosion Cracking Behavior of X80 Pipeline Steel with Design Factor of 0.8 in Near-neutral pH Value Solutions. Journal of Materials Engineering, 2015, 43(1): 89-95.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.01.016      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I1/89
[1] 肖军,吴明,陈旭,等.外加电位对X80管线钢在库尔勒土壤模拟溶液中应力腐蚀行为的影响[J].热加工工艺,2010,39(18):28-30.XIAO Jun,WU Ming,CHEN Xu,et al.Effect of applied potential on stress corrosion behaviors of X80 pipeline steel in Ku'erle soil simulated solution[J].Hot Working Technology, 2010, 39(18):28-30.
[2] FANG B Y,ATRENS A,WANG J Q.Review of stress corrosion cracking of pipeline steels in "low" and "high" pH solutions[J].Journal of Materials Science,2003,38(1):127-132.
[3] MANFREDI C,OTEGUI J L.Failures by SCC in buried pipelines[J].Engineering Failure Analysis,2002,9(5):495-509.
[4] 孟旭,俞宏英,程远,等.X80管线钢在模拟樟树土壤溶液中的应力腐蚀敏感性[J].机械工程材料,2012,36(8):46-50.MENG Xu,YU Hong-ying,CHENG Yuan,et al.Stress corrosion susceptibility of X80 pipeline steel in simulated solution of Zhangshu area soil[J].Materials for Mechanical Engineering, 2012,36(8):46-50.
[5] 程远,俞宏英,王莹,等.应变速率对X80管线钢应力腐蚀的影响[J].材料工程,2013,(3):77-82.CHENG Yuan,YU Hong-ying,WANG Ying,et al.Effect of strain rate on stress corrosion cracking of X80 pipeline steel[J].Journal of Materials Engineering, 2013,(3):77-82.
[6] 郏义征,李辉,胡楠楠,等.外加阴极电位对X100管线钢近中性pH值应力腐蚀开裂行为的影响[J].四川大学学报,2013,45(4):186-191.XIA Yi-zheng,LI Hui,HU Nan-nan,et al.Effect of applied cathode potential on the behavior of near-neutral pH SCC of X100 pipeline steel[J]. Journal of Sichuan University, 2013,45(4):186-191.
[7] 程远,俞宏英,王莹,等.外加电位对X80钢在南雄土壤模拟溶液中应力腐蚀行为的影响[J].腐蚀与防护,2013,34(1):13-17.CHENG Yuan,YU Hong-ying,WANG Ying,et al.Effect of applied potentials on stress corrosion cracking of X80 steel in simulated Nanxiong soil solution[J]. Corrosion & Protection, 2013,34(1):13-17.
[8] 王炳英,霍立兴,王东坡,等.X80管线钢在近中性pH溶液中的应力腐蚀开裂[J].天津大学学报,2007,40(6):757-760.WANG Bin-ying,HUO Li-xing,WANG Dong-po,et al.Stress corrosion cracking of X80 pipeline steel in near-neutral pH values solutions[J].Journal of Tianjin University, 2007,40(6):757-760.
[9] 陈旭,吴明,何川,等.外加电位对X80钢及其焊缝在库尔勒土壤模拟溶液中SCC行为的影响[J].金属学报,2010,46(8):951-958.CHEN Xu,WU Ming,HE Chuan,et al.Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution[J]. Acta Metallurgica Sinica, 2010,46(8):951-958.
[10] KENTISH P J.Gas pipeline failures:australian experience[J].Corrosion Engineering,Science and Technology,1985,20(3):139-146.
[11] CHENG Y F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines[J].Electrochimica Acta,2007,52(7):2661-2667.
[12] PARKINS R N. Factors influencing stress corrosion crack growth kinetics[J]. Corrosion,1987,43(3): 130-139.
[13] PILKEY A K,LAMBERT S B,PLUMTREE A.Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution[J].Corrosion,1995,51(2):91-96.
[14] 许淳淳,池琳,胡钢.X70管线钢在CO32-/HCO3-溶液中的电化学行为研究[J].腐蚀科学与防护技术, 2004, 16(5): 268-271. XU Zhun-zhun,CHI Lin,HU Gang.The electrochemical behavior research of X70 pipeline steel in CO32-/HCO3- solutions[J]. Corrosion Science and Protection Technology, 2004, 16(5): 268-271.
[15] 范林,刘智勇,杜翠薇,等.X80管线钢高pH应力腐蚀开裂机制与电位的关系[J].金属学报,2013,49(6):689-698. FAN Lin,LIU Zhi-yong,DU Cui-wei,et al.Relationship between high pH stress corrosion cracking mechanisms and applied potentials of X80 pipeline steel[J]. Acta Metallurgica Sinica, 2013,49(6):689-698.
[16] 束德林,凤仪,陈九磅.工程材料力学性能[M].北京:机械工业出版社,2005. SHU De-lin,FENG Yi,CHEN Jiu-bang. Engineering Material Mechanics Performance[M].Beijing: China Machine Press,2005.
[17] 褚武扬,乔利杰,陈奇志.断裂与环境断裂[M].北京:科学出版社,2000.25-31. ZHU Wu-yang,QIAO Li-jie,CHEN Qi-zhi. Fracture and Environment Fracture[M].Beijing: Science Press,2005.25-31.
[18] OGUNDELE G I,WHITE W E.Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide[J].Corrosion,1986,42(2):71-78.
[19] PARKINS R N. Predictive approaches to stress corrosion cracking failure[J]. Corros Sci, 1980, 20(2): 147-166.
[20] 李超,杜翠薇,刘智勇,等.X100管线钢在酸性土壤模拟溶液中的应力腐蚀行为[J].腐蚀科学与防护技术,2012,24(4):327-331. LI Chao,DU Cui-wei,LIU Zhi-yong,et al.Stress corrosion behaviors of X100 pipeline steel in simulated solution of acid soil[J]. Corrosion Science and Protection Technology, 2012,24(4):327-331.
[1] 章淑芳, 王晓敏, 陈辉, 廖潇垚. 7003铝合金动车柜体的应力腐蚀开裂[J]. 材料工程, 2015, 43(7): 105-112.
[2] 郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
[3] 周峰, 吴开明. 超快冷工艺对高铌X80管线钢抗腐蚀性能的影响[J]. 材料工程, 2015, 43(2): 67-72.
[4] 程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
[5] 刘瑛, 张品芳, 陈兰君, 张合, 张新明, 耿占吉. 预析出对2519A铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, 0(6): 11-17.
[6] 孔德军, 龙丹, 吴永忠, 叶存冬. X80管线钢埋弧焊接头冲击韧性及其断口形貌分析[J]. 材料工程, 2013, 0(6): 50-54.
[7] 程远, 俞宏英, 王莹, 孟旭, 孙冬柏. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程, 2013, 0(3): 77-82.
[8] 张晓云, 梅克力, 熊文华, 郭孟秋, 高健. 7A52铝合金焊接件应力腐蚀性能评价[J]. 材料工程, 2013, 0(10): 86-92,97.
[9] 梁平, 张云霞, 胡传顺. 腐蚀产物膜对X80钢在库尔勒土壤模拟溶液中腐蚀行为的影响[J]. 材料工程, 2012, 0(4): 62-67.
[10] 刘亚娟, 吕祥鸿, 赵国仙, 陈长风, 薛艳. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究[J]. 材料工程, 2012, 0(10): 17-21,47.
[11] 王卫国, 李彦民, 魏秦文, 姚登樽, 尹长华. X80热煨弯管热处理工艺对组织及性能的影响[J]. 材料工程, 2012, 0(10): 80-83.
[12] 刘建华, 郝雪龙, 李松梅, 于美. 基于灰色理论的高强铝合金应力腐蚀开裂预测模型的建立与应用[J]. 材料工程, 2011, 0(3): 60-64.
[13] 胥聪敏. X80钢在霍尔果斯水饱和土壤中的短期腐蚀行为研究[J]. 材料工程, 2011, 0(3): 78-81,86.
[14] 吕祥鸿, 赵国仙, 王宇, 张建兵, 谢凯意. 超级13Cr马氏体不锈钢抗SSC性能研究[J]. 材料工程, 2011, 0(2): 17-21,25.
[15] 刘远勇, 张晓云, 裴和中, 陆峰, 高健. 7B04铝合金应力腐蚀敏感性研究[J]. 材料工程, 2010, 0(2): 33-36,41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn