Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (2): 79-84    DOI: 10.11868/j.issn.1001-4381.2015.02.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测
张杰1, 闫志峰1, 王文先1, 王志斌2, 王凯1, 张红霞1, 张心保2
1. 太原理工大学 材料科学与工程学院, 太原 030024;
2. 山西太钢不锈钢股份有限公司, 太原 030003
Heat Generation Rule and Fatigue Performance Prediction of 443 Ferritic Stainless Steel Under Tension-tension Cyclic Loading
ZHANG Jie1, YAN Zhi-feng1, WANG Wen-xian1, WANG Zhi-bin2, WANG Kai1, ZHANG Hong-xia1, ZHANG Xin-bao2
1. College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Shanxi Taigang Stainless Steel Co., Ltd., Taiyuan 030003, China
全文: PDF(1934 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用红外热像法研究了443铁素体不锈钢在疲劳试验过程中表面温度场的变化规律,提出了采用ΔT-Nf曲线预测疲劳寿命的方法.结果表明:温升极限值ΔT=3.18℃,即当ΔT>3.18℃时,试样发生疲劳断裂,与实测温升值3.49℃相比,误差为8.89%.利用ΔT-Nf曲线预测443铁素体不锈钢在5×106循环次数下的疲劳强度为277.97MPa,与传统方法测得结果284.45MPa相对误差为2.28%.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张杰
闫志峰
王文先
王志斌
王凯
张红霞
张心保
关键词 443铁素体不锈钢温度场疲劳强度红外热像法    
Abstract:The surface temperature field of 443 ferritic stainless steel was studied using infrared thermography during fatigue testing.ΔT-Nf curve method was put forward to predict the fatigue life. The results show that the ultimate temperature increment is ΔT=3.18℃,that is, when ΔT is more than 3.18℃,fatigue fracture occurs on the specimen, compared with the actually measured temperature increment of 3.49℃, the error is 8.89%. The percentage difference between the experimental result 284.45MPa and the predicted result 277.97MPa is 2.28% when fatigue cycles is up to 5×106.
Key words443 ferritic stainless steel    temperature field    fatigue strength    infrared thermography
收稿日期: 2014-01-14     
1:  TG113.25  
基金资助:国家自然科学基金资助项目(51175364);山西省研究生优秀创新项目(20123031)
通讯作者: 王文先(1963-),男,教授,主要从事材料连接及界面行为研究,联系地址:山西省太原市迎泽西大街79号,太原理工大学材料科学与工程学院502室(030024), E-mail: wangwenxian@tyut.edu.cn     E-mail: wangwenxian@tyut.edu.cn
引用本文:   
张杰, 闫志峰, 王文先, 王志斌, 王凯, 张红霞, 张心保. 拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测[J]. 材料工程, 2015, 43(2): 79-84.
ZHANG Jie, YAN Zhi-feng, WANG Wen-xian, WANG Zhi-bin, WANG Kai, ZHANG Hong-xia, ZHANG Xin-bao. Heat Generation Rule and Fatigue Performance Prediction of 443 Ferritic Stainless Steel Under Tension-tension Cyclic Loading. Journal of Materials Engineering, 2015, 43(2): 79-84.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.02.013      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I2/79
[1] 邹勇. TTS443高铬铁素体不锈钢的开发[J]. 特殊钢, 2012, 33(1): 51-53.ZOU Yong. Development of a high-chromium ferrite stainless steel TTS443[J]. Special Steel, 2012, 33(1): 51-53.
[2] 郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217-227. GUO Xing-lin, WANG Xiao-gang. Overview on the thermographic method for fatigue research[J]. Advances in Mechanics, 2009, 39(2): 217-227.
[3] GUO X L, FAN J L, ZHAO Y G. Fatigue behavior analysis of cruciform welded joints by infrared thermographic method[J]. Advanced Materials Research, 2011, 197-198(2): 1395-1399.
[4] 樊俊铃, 郭杏林, 吴承伟, 等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26(1): 61-67.FAN Jun-ling, GUO Xing-lin, WU Cheng-wei, et al. Effect of heat treatments on fatigue properties of FV520B steel using infrared thermography[J]. Chinese Journal of Materials Research, 2012, 26(1): 61-67.
[5] RISITANO A, RISITANO G. Cumulative damage evaluation of steel using infrared thermography[J]. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-91.
[6] FARGIONE G, GERACI A, LA ROSA G. et al. Rapid determination of the fatigue curve by the thermographic method[J]. International Journal of Fatigue, 2002, 24(1): 11-19.
[7] 樊俊铃, 郭杏林, 吴承伟, 等. 热像法和能量法快速评估Q235钢的疲劳性能[J]. 材料工程, 2012, (12): 71-76.FAN Jun-ling, GUO Xing-lin, WU Cheng-wei, et al. Fast evaluation of fatigue behavior of Q235 steel by infrared thermography and energy approach[J]. Journal of Materials Engineering, 2012, (12): 71-76.
[8] FAN J L, GUO X L, WU C W, et al. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 2012, 44(11): 1-7.
[9] CRUPI V, GUGLIELMINO E, MAESTRO M, et al. Fatigue analysis of butt welded AH36 steel joints: thermographic method and design S-N curve[J]. Marine Structures, 2009, 22(3): 373-386.
[10] 王青志, 黄芳,丁桦. 红外热像法快速确定45#钢的疲劳性能[J]. 实验力学, 2013, 28(1): 68-76. WANG Qing-zhi, HUANG Fang, DING Hua. On the rapid determination of 45 steel fatigue behavior based on infrared thermography[J]. Experimental Mechanics, 2013, 28(1): 68-76.
[11] 薛红前, 杨斌堂, BATHIAS C. 高频载荷下高强钢的超高周疲劳及热耗散研究[J]. 材料工程, 2009, (3): 49-53. XUE Hong-qian, YANG Bin-tang, BATHIAS C. Very high cycle fatigue behavior and thermographic analysis of high strength steels under high frequency loading[J]. Journal of Materials Engineering, 2009, (3): 49-53.
[12] 刘禹门. 结构钢与铝合金塑性变形的微观机制[M]. 西安: 西安交通大学出版社, 2004.3-15. LIU Yu-men.Micromechanism of Plastic Deformation of Structural Steel and Aluminum Alloy[M].Xi'an:Xi'an Jiaotong University Press,2004.3-15.
[13] YAN Z F, ZHANG H X, WANG W X, et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Trans Nonferrous Met Soc China, 2013, 23(7): 1942-1948.
[14] MAQUIN F, PIERRON F. Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity[J]. Mechanics of Materials, 2009, 41(8): 928-942.
[15] GIANCANE S, CHRYSOCHOOS A, DATTOMA V, et al. Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy[J]. Theoretical and Applied Fracture Mechanics, 2009, 52(2): 117-121.
[16] UMMENHOFER T,MEDGENBERG J. On the use of infrared thermography for the analysis of fatigue damage processes in welded joints[J]. International Journal of Fatigue, 2009, 31(1): 130-137.
[17] 汝继刚, 李超,王亮, 等. 喷丸强化对7A12 铝合金微观组织和疲劳性能的影响[J]. 航空材料学报, 2013, 33(6): 52-56. RU Ji-gang, LI Chao, WANG Liang, et al. Effect of shot peening on microstructure and fatigue life of 7A12 aluminum alloy[J]. Journal of Aeronautical Materials, 2013, 33(6): 52-56.
[18] LANGFORD G, COHEN M. Microstructural analysis by high-voltage electron diffraction of severely drawn iron wires[J]. Metallurgical Transactions, 1975, 6(4): 901-910.
[19] 闫志峰, 张红霞, 王文先, 等. 红外热成像法预测镁合金的疲劳性能[J]. 机械工程材料, 2012, 36(2): 72-75. YAN Zhi-feng, ZHANG Hong-xia, WANG Wen-xian, et al. Infrared thermography predicting fatigue property of AZ31B magnesium alloy[J]. Materials for Mechanical Engineering, 2012, 36(2): 72-75.
[20] 王晓钢. 基于热像法的寿命预测与疲劳分析[D]. 大连:大连理工大学, 2009. WANG Xiao-gang.Life prediction and fatigue analysis based on thermographic method[D].Dalian:Dalian University of Technology,2009.
[1] 崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
[2] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[3] 陈玲, 宇文晅晅, 钟蜀津, 解锦婷. 确定金属型铸造界面传热系数方法的研究[J]. 材料工程, 2012, 0(3): 17-21.
[4] 谢洪吉, 李嘉荣, 金海鹏, 刘世忠, 熊继春. DD6单晶高温合金导向叶片定向凝固过程数值模拟[J]. 材料工程, 2011, 0(11): 58-61,67.
[5] 杨友. MB8镁合金高周疲劳实验研究[J]. 材料工程, 2010, 0(12): 44-46.
[6] 杨治立, 陈登明, 廖道瀚. 铝镍钴定向凝固过程的模拟研究[J]. 材料工程, 2009, 0(1): 46-49.
[7] 刘丹, 张海鸥, 王桂兰. 氩氮气体混合比对等离子射流温度和涂层特性的影响[J]. 材料工程, 2003, 0(11): 45-48.
[8] 戚学贵, 陈则韶, 王冠中. 热丝法化学气相沉积金刚石系统温度分布与薄膜生长关系研究[J]. 材料工程, 2001, 0(11): 31-34,16.
[9] 刘世忠, 李嘉荣, 唐定忠, 钟振纲. 单晶高温合金定向凝固过程数值模拟[J]. 材料工程, 1999, 0(7): 40-42.
[10] 方英明, 王仁智. 一种新型的内孔表面强化的加工方法[J]. 材料工程, 1997, 0(12): 33-34,38.
[11] 汝继来, 王仁智, 李向斌. Rene'95粉末合金喷丸强化研究[J]. 材料工程, 1996, 0(2): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn