Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 12-17    DOI: 10.11868/j.issn.1001-4381.2015.03.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
基于YSZ液料的液流/雾化等离子熔射射流形态及微观组织研究
符友恒1, 张海鸥2, 芮道满2, 王桂兰1
1. 华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074;
2. 华中科技大学 数字制造装备与技术国家重点实验室, 武汉 430074
Jet Morphology and Microstructure of Liquid Stream/ Atomization Plasma Spraying Based on YSZ Suspension
FU You-heng1, ZHANG Hai-ou2, RUI Dao-man2, WANG Gui-lan1
1. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2. State Key Lab of Digital Manufacturing Equipment & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(2017 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用8% (摩尔分数)YSZ粉末(d50=700 nm)配置熔射悬浮液料,比较了送料气压、熔射功率对液流和雾化等离子射流形态特征的影响。利用SEM对制备涂层的微观组织进行表征,结果表明:雾化较液流液 料输送方式制备涂层组织结构更致密,两种液料输送方式下熔射距离的增加均导致部分熔融粒子增多,其有助于形成孔隙结构。基于雾化送料制备了厚度为30μm,孔隙率为1.5%的精细结构YSZ涂层,可用于固体氧化物燃料电池的电解质层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
符友恒
张海鸥
芮道满
王桂兰
关键词 液流雾化液料等离子熔射精细结构    
Abstract:8% (mole fraction)YSZ powder (d50=700nm) was used for suspension. A comparative study was conducted on the influence of different injection pressure and plasma power on the plasma jet morphologic characteristic with liquid stream/atomization injection. The microstructures of prepared coating was characterized by SEM method. The results show that more compact layers are obtained with atomization injection compared with liquid stream injection. As the spraying distance increases, more semi-melted particles are observed for both injection methods, which are beneficial for forming pore structure. Finely structured YSZ layers with 30μm thickness and 1.5% porosity are fabricated by atomization injection, which can be used as electrolyte layer of solid oxide fuel cell.
Key wordsliquid stream    atomization    suspension plasma spraying    fine structure
收稿日期: 2013-04-07      出版日期: 2015-03-20
中图分类号:  TG174.44  
基金资助:国家自然科学基金资助项目(51175203)
通讯作者: 张海鸥(1955-),男,博士,教授,博士生导师,研究方向为新材料加工与模具制造技术,高能束增材制造的CAD/CAE/CAM 及装备, 联系地址:武汉市华中科技大学先进制造大楼(430074),zholab@mail.hust.edu.cn     E-mail: zholab@mail.hust.edu.cn
引用本文:   
符友恒, 张海鸥, 芮道满, 王桂兰. 基于YSZ液料的液流/雾化等离子熔射射流形态及微观组织研究[J]. 材料工程, 2015, 43(3): 12-17.
FU You-heng, ZHANG Hai-ou, RUI Dao-man, WANG Gui-lan. Jet Morphology and Microstructure of Liquid Stream/ Atomization Plasma Spraying Based on YSZ Suspension. Journal of Materials Engineering, 2015, 43(3): 12-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.03.003      或      http://jme.biam.ac.cn/CN/Y2015/V43/I3/12
[1] 汪刘应, 王汉功.多功能微弧等离子喷涂技术与应用[M].北京:科学出版社, 2010.WANG Liu-ying, WANG Han-gong. Multi-Function Micro-Plasma Spraying Technology and Application[M].Beijing: Science Press, 2010.
[2] VAβEN R, KAβNER H, MAUER G, et al.Suspension plasma spraying:process characteristics and applications[J].Journal of Thermal Spray Technology, 2010, 19(1-2):219-225.
[3] BACCIOCHINI A, MONTAVON G, ILAVSKY J, et al. Porous architecture of SPS thick YSZ coatings structured at the nanometer scale[J].Journal of Thermal Spray Technology, 2010, 19(1-2):198-206.
[4] FAZILLEAU J, DELBOS C, RAT V, et al.Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior[J].Plasma Chemistry and Plasma Processing, 2006, 26:371-391.
[5] TOMASZEK R, PAWLOWSKI L, GENGEMBRE L, et al. Microstructure of suspension plasma sprayed multilayer coatings of hydroxyapatite and titanium oxide[J].Surface and Coatings Technology, 2007, 201(16):7432-7440.
[6] KASSNER H, SIEGERT R, HATHIRAMANI D, et al.Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings[J].Journal of Thermal Spray Technology, 2008, 17(1):115-123.
[7] RUI D M, ZHANG H O, WANG G L, et al.Fabrication of finely structured silicon-supported SOFC with anode deposited by multi-phase plasma spraying[J].Journal of Materials Processing Technology, 2012, 212:2193-2199.
[8] 夏卫生, 张海鸥, 王桂兰, 等.固体氧化物燃料电池核心部件的液料等离子熔射制备工艺[J].功能材料, 2008, 39(9):1552-1554.XIA Wei-sheng, ZHANG Hai-ou, WANG Gui-lan, et al.Fabrication technology for core parts of solid oxide fuel cell by suspension plasma spraying[J].Journal of Functional Materials, 2008, 39(9):1552-1554.
[9] 许艳华, 李强.悬浮液等离子喷涂与常规等离子喷涂纳米结构陶瓷涂层的研究[J].中国表面工程, 2010, 23(1):51-56.XU Yan-hua, LI Qiang. Research on nanostructured ceramic coatings by suspension plasma spraying and conventional plasm spraying[J]. China Surface Engineering, 2010, 23(1):51-56.
[10] RAMPON R, FILIATRE C, BERTRAND G.Suspension plasma spraying of YPSZ coatings: suspension atomization and injection[J]. Journal of Thermal Spray Technology, 2008, 17(1):105-114.
[11] FAUCHAIS P, MONTAVON G.Latest developments in suspension and liquid precursor thermal spraying[J].Journal of Thermal Spray Technology, 2010, 19(1-2):226-239.
[12] PAWLOWSKI L.Suspension and solution thermal spray coatings[J]. Surface and Coatings Technology, 2009, 203:2807-2829.
[13] WALDBILLIG D, KESLER O.Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers[J].Journal of Power Sources, 2009, 191(2):320-329.
[14] XU J P, FANG J C, LI Z G.Plasma jet imaging by CCD technology in rapid molding manufacturing[J].Journal of Materials Processing Technology, 2002, 129:250-254.
[15] 章桥新, 王晓辉, 张亮.等离子喷涂纳米ZrO2 8% Y2O3 涂层的结构及性能[J].材料保护, 2009, 42(1):52-55. ZHANG Qiao-xin, WANG Xiao-hui, ZHANG Liang.The structure and properties of nanometer ZrO2 8% Y2O3 coating by plasma spraying[J]. Materials Protection, 2009, 42(1):52-55.
[16] 朱海云, 孙宏飞, 李业超.等离子喷涂纳米陶瓷涂层的显微组织及结构分析[J].材料保护, 2009, 42(4):51-53. ZHU Hai-yun, SUN Hong-fei, LI Ye-chao.The microstructural and structural analysis of nanostructured ceramic coatings by plasma spraying[J]. Materials Protection, 2009, 42(4):51-53.
[1] 董伟, 孟瑶, 许富民, 韩阳, 王延洋, 陈楷. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[2] 冯彩梅, 巩宇, 陈永翀, 刘丹丹, 张萍. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2): 1-8.
[3] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[4] 邝泉波, 邹黎明, 蔡一湘, 刘辛, 程军, 易健宏. 等离子旋转电极雾化法制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金粉末[J]. 材料工程, 2017, 45(10): 39-46.
[5] 王新星, 张宝林, 王行展, 冯凌云. 雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子[J]. 材料工程, 2014, 0(8): 51-54.
[6] 郭士锐, 姚建华, 陈智君, 楼程华, 吴涵锋. 喷嘴结构对气雾化激光熔覆专用合金粉末的影响[J]. 材料工程, 2013, 0(7): 50-53,60.
[7] 何培, 周张健, 李明, 许迎利, 葛昌纯. 初始原料和球磨气氛对ODS铁素体钢机械合金化的影响[J]. 材料工程, 2010, 0(9): 20-24.
[8] 叶荣昌, 宗毳, 龙毅. 磁性蓄冷材料HoCu2雾化粉末的制备研究[J]. 材料工程, 2008, 0(12): 34-37.
[9] 沈军, 孙剑飞, 谢壮德, 周彼德. 超音气体雾化Al-Si合金粉末表面氧化和吸附特性[J]. 材料工程, 2002, 0(6): 43-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn