Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 42-47    DOI: 10.11868/j.issn.1001-4381.2015.03.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Galvalume镀层钢在青岛海域海水中的耐蚀性能
刘栓1,2, 孙虎元1, 孙立娟1, 张宁1, 陈建敏2
1. 中国科学院 海洋研究所海洋环境腐蚀与生物污损重点实验室 山东 青岛 266071;
2. 中国科学院 宁波材料技术与工程研究所海洋新材料与应用技术重点实验室, 浙江 宁波 315201
Corrosion Resistance of Galvalume Coated Steel in Qingdao Seawater
LIU Shuan1,2, SUN Hu-yuan1, SUN Li-juan1, ZHANG Ning1, CHEN Jian-min2
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China;
2. Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
全文: PDF(2878 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用极化曲线测试和交流阻抗技术研究了Galvalume镀层钢在青岛海域海水中的耐蚀性能,利用电子扫描电镜对镀层表面的腐蚀产物形貌进行了分析,详细探讨了海水温度和溶解氧浓度对Galvalume镀层钢电化学腐蚀行为的影响。结果表明:温度升高,破坏了保护性腐蚀产物膜在镀层表面的吸附,促进了阳极活化反应过程。低浓度的溶解氧抑制了阴极反应,镀层的耐蚀性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘栓
孙虎元
孙立娟
张宁
陈建敏
关键词 Galvalume镀层钢耐蚀性能海水温度溶解氧    
Abstract:The corrosion resistance of Galvalume coated steel in Qingdao seawater was investigated by polarization curves and EIS methods. The morphology of corrosion products absorbed on the coating was analyzed by scanning electron microscopy (SEM), the effects of temperature and dissolved O2 concentration on electrochemical corrosion behavior of Galvalume coated steel were studied in details. The results show that the protective corrosion product film absorbed on the coating is damaged and the anodic reaction is activated with the increase of temperature. The cathodic reaction is inhibited under low concentration of dissolved O2 and the corrosion resistance of the galvalume coating is improved.
Key wordsGalvalume coated steel    corrosion resistance    seawater    temperature    dissolved oxygen
收稿日期: 2013-01-22      出版日期: 2015-03-20
中图分类号:  TG171  
基金资助:国家自然科学基金资助项目(41076046)
通讯作者: 孙虎元(1970-),男,博士后,研究员,从事海洋金属腐蚀与防护研究,联系地址:山东省青岛市市南区南海路7号 中科院海洋研究所生物楼525室(266071),sun@qdio.ac.cn     E-mail: sun@qdio.ac.cn
引用本文:   
刘栓, 孙虎元, 孙立娟, 张宁, 陈建敏. Galvalume镀层钢在青岛海域海水中的耐蚀性能[J]. 材料工程, 2015, 43(3): 42-47.
LIU Shuan, SUN Hu-yuan, SUN Li-juan, ZHANG Ning, CHEN Jian-min. Corrosion Resistance of Galvalume Coated Steel in Qingdao Seawater. Journal of Materials Engineering, 2015, 43(3): 42-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.03.008      或      http://jme.biam.ac.cn/CN/Y2015/V43/I3/42
[1] YADAV A P, NISHIKATA A, TSURU T. Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions[J]. Corrosion Science, 2004, 46(2): 361-376.
[2] 刘栓, 孙虎元, 范汇吉, 等. 镀锌钢的腐蚀行为研究进展[J].材料保护, 2012, 45 (12): 42-45.LIU S, SUN H Y, FAN H J, et al. The research review of the corrosion behavior on galvanized steel[J]. Materials Protection, 2012, 45 (12): 42-45.
[3] ZHANG X, NAMVU T, VOLOVITCH P, et al. The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media[J]. Applied Surface Science, 2012, 258 (10): 4351-4359.
[4] QIU P, LEYGRAF C, WALLINDER I O. Evolution of corrosion products and metal release from Galvalume coatings on steel during short and long-term atmospheric exposures[J]. Materials Chemistry and Physics, 2012, 133 (1): 419-428.
[5] LIN K L, YANG C F, LEE J T. Correlation of microstructure with corrosion and electrochemical behavior of batch-type hot-dip Al-Zn coatings (PartⅡ 55%Al-Zn coating)[J]. Corrosion, 1991, 47(1): 17-22.
[6] 张大磊, 李焰. 热镀锌钢材在海洋大气环境中的氢渗透行为[J]. 材料研究学报, 2009, 23(6): 592-597.ZHANG D L, LI Y. Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chinese Journal of Materials Research, 2009, 23(6): 592-597.
[7] 李焰, 邢少华, 李鑫, 等. 热浸镀层在青岛站的海水腐蚀行为对比(Ⅰ)-全浸区[J]. 中国有色金属学报, 2006, 16 (12): 2083-2091.LI Y, XING S H, LI X, et al. Seawater corrosion behavior of hot dip coatings at Qingdao test station (Ⅰ)-immersion zone[J]. The Chinese Journal of Nonferrous Metals, 2006, 16 (12): 2083-2091.
[8] 李焰, 邢少华, 李鑫, 等. 热浸镀层在青岛站的海水腐蚀行为对比(II)-潮差区[J]. 中国有色金属学报, 2007, 17 (8): 1247-1254.LI Y, XING S H, LI X, et al. Seawater corrosion behavior of hot dip coatings at Qingdao test station (II)-tidal zone[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(8):1247-1254.
[9] 李焰, 邢少华, 李鑫, 等. 热浸镀层在青岛站的海水腐蚀行为对比(Ⅲ)-飞溅区[J]. 中国有色金属学报, 2007, 17 (9): 1527-1535.LI Y, XING S H, LI X, et al. Seawater corrosion behavior of hot dip coatings at Qingdao test station (Ⅲ)-splash zone[J]. The Chinese Journal of Nonferrous Metals, 2007, 17 (9):1527-1535.
[10] 张杰, 于振花, 李焰.Zn-55Al-Si合金镀层钢丝在海水中的耐蚀性能[J].材料研究学报, 2008, 22 (4): 347-352. ZHANG J, YU Z H, LI Y. Corrosion behavior of hot-dipped Zn-55Al-Si coated steel wires in seawater[J]. Chinese Journal of Materials Research, 2008, 22(4): 347-352.
[11] 刘栓, 孙虎元, 孙立娟, 等. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8):60-64. LIU S, SUN H Y, SUN L J, et al. Effects of Zn(OH)2 on corrosion behavior of galvanized steel in seawater[J]. Journal of Materials Engineering, 2013, (8):60-64.
[12] LI Y. Formation of nano-crystalline corrosion products on Zn-Al alloy coating exposed to seawater[J]. Corrosion Science, 2001, 43 (9): 1973-1800.
[13] LIU S, ZHAO X R, SUN H Y, et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal, 2013, 231: 441-448.
[14] LIU S, GU Y, WANG S L, et al. Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system[J]. Chinese Science Bulletin, 2013, 58(19): 2340-2346.
[15] LIAO X N, CAO F H, ZHENG L Y, et al. Corrosion behavior of copper under chloride-containing thin electrolyte layer[J]. Corrosion Science, 2011, 53(10): 3289-3298.
[16] LIU S, SUN H Y, SUN L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corrosion Science, 2012, 65 (5): 520-527.
[17] ZOU Y, WANG J, ZHENG Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corrosion Science, 2011, 53(1): 208-216.
[18] 刘栓, 孙虎元, 孙立娟. pH值和温度对镀锌钢在模拟锈层溶液中电化学腐蚀行为的影响[J]. 功能材料, 2013, 44 (6): 858-861. LIU S, SUN H Y, SUN L J. Effects of pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rust layer solution[J]. Journal of Functional Materials, 2013, 44 (6): 858-861.
[19] SUN H Y, ZANG B N, LIU S, et al. Effects of Zn(OH)2 on corrosion behavior of hot dipped Zn coating in freshwater[J]. Advanced Materials Research, 2012, 399-401: 152-155.
[20] SUN H Y, LIU S, SUN L J, et al. A comparative study on the corrosion of Galvanized steel under simulated rust layer solution with and without 3.5wt%NaCl[J]. International Journal of Electrochemical Science, 2013, (8): 3494-3509.
[1] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[2] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[3] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[4] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[5] 何端鹏, 高鸿, 邢焰, 李岩, 王向轲. 航天器用氰酸酯基胶黏剂的固化模型及固化工艺设计[J]. 材料工程, 2020, 48(10): 60-67.
[6] 余煜玺, 韩滨. PDC-SiBCN陶瓷基无线无源温度传感器的性能[J]. 材料工程, 2020, 48(1): 121-127.
[7] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[8] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[9] 赵建玲, 马晨雨, 李建强, 李晓禹. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6): 11-19.
[10] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[11] 刘艳芳, 冯可芹, 周虹伶, 柯思璇. 烧结温度对大电流电场烧结制备W-Mo-Cu合金的影响[J]. 材料工程, 2019, 47(11): 135-140.
[12] 谢鑫, 唐建国, 石洪吉, 官立群, 杨柳, 邓运来, 唐昌平, 张议丹. 挤压温度对Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr合金的力学性能和耐生物腐蚀性能的影响[J]. 材料工程, 2019, 47(10): 76-81.
[13] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[14] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[15] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn