Corrosion Resistance of Galvalume Coated Steel in Qingdao Seawater
LIU Shuan1,2, SUN Hu-yuan1, SUN Li-juan1, ZHANG Ning1, CHEN Jian-min2
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China;
2. Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
Abstract:The corrosion resistance of Galvalume coated steel in Qingdao seawater was investigated by polarization curves and EIS methods. The morphology of corrosion products absorbed on the coating was analyzed by scanning electron microscopy (SEM), the effects of temperature and dissolved O2 concentration on electrochemical corrosion behavior of Galvalume coated steel were studied in details. The results show that the protective corrosion product film absorbed on the coating is damaged and the anodic reaction is activated with the increase of temperature. The cathodic reaction is inhibited under low concentration of dissolved O2 and the corrosion resistance of the galvalume coating is improved.
[1] YADAV A P, NISHIKATA A, TSURU T. Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions[J]. Corrosion Science, 2004, 46(2): 361-376.
[2] 刘栓, 孙虎元, 范汇吉, 等. 镀锌钢的腐蚀行为研究进展[J].材料保护, 2012, 45 (12): 42-45.LIU S, SUN H Y, FAN H J, et al. The research review of the corrosion behavior on galvanized steel[J]. Materials Protection, 2012, 45 (12): 42-45.
[3] ZHANG X, NAMVU T, VOLOVITCH P, et al. The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media[J]. Applied Surface Science, 2012, 258 (10): 4351-4359.
[4] QIU P, LEYGRAF C, WALLINDER I O. Evolution of corrosion products and metal release from Galvalume coatings on steel during short and long-term atmospheric exposures[J]. Materials Chemistry and Physics, 2012, 133 (1): 419-428.
[5] LIN K L, YANG C F, LEE J T. Correlation of microstructure with corrosion and electrochemical behavior of batch-type hot-dip Al-Zn coatings (PartⅡ 55%Al-Zn coating)[J]. Corrosion, 1991, 47(1): 17-22.
[6] 张大磊, 李焰. 热镀锌钢材在海洋大气环境中的氢渗透行为[J]. 材料研究学报, 2009, 23(6): 592-597.ZHANG D L, LI Y. Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chinese Journal of Materials Research, 2009, 23(6): 592-597.
[7] 李焰, 邢少华, 李鑫, 等. 热浸镀层在青岛站的海水腐蚀行为对比(Ⅰ)-全浸区[J]. 中国有色金属学报, 2006, 16 (12): 2083-2091.LI Y, XING S H, LI X, et al. Seawater corrosion behavior of hot dip coatings at Qingdao test station (Ⅰ)-immersion zone[J]. The Chinese Journal of Nonferrous Metals, 2006, 16 (12): 2083-2091.
[8] 李焰, 邢少华, 李鑫, 等. 热浸镀层在青岛站的海水腐蚀行为对比(II)-潮差区[J]. 中国有色金属学报, 2007, 17 (8): 1247-1254.LI Y, XING S H, LI X, et al. Seawater corrosion behavior of hot dip coatings at Qingdao test station (II)-tidal zone[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(8):1247-1254.
[9] 李焰, 邢少华, 李鑫, 等. 热浸镀层在青岛站的海水腐蚀行为对比(Ⅲ)-飞溅区[J]. 中国有色金属学报, 2007, 17 (9): 1527-1535.LI Y, XING S H, LI X, et al. Seawater corrosion behavior of hot dip coatings at Qingdao test station (Ⅲ)-splash zone[J]. The Chinese Journal of Nonferrous Metals, 2007, 17 (9):1527-1535.
[10] 张杰, 于振花, 李焰.Zn-55Al-Si合金镀层钢丝在海水中的耐蚀性能[J].材料研究学报, 2008, 22 (4): 347-352. ZHANG J, YU Z H, LI Y. Corrosion behavior of hot-dipped Zn-55Al-Si coated steel wires in seawater[J]. Chinese Journal of Materials Research, 2008, 22(4): 347-352.
[11] 刘栓, 孙虎元, 孙立娟, 等. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8):60-64. LIU S, SUN H Y, SUN L J, et al. Effects of Zn(OH)2 on corrosion behavior of galvanized steel in seawater[J]. Journal of Materials Engineering, 2013, (8):60-64.
[12] LI Y. Formation of nano-crystalline corrosion products on Zn-Al alloy coating exposed to seawater[J]. Corrosion Science, 2001, 43 (9): 1973-1800.
[13] LIU S, ZHAO X R, SUN H Y, et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal, 2013, 231: 441-448.
[14] LIU S, GU Y, WANG S L, et al. Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system[J]. Chinese Science Bulletin, 2013, 58(19): 2340-2346.
[15] LIAO X N, CAO F H, ZHENG L Y, et al. Corrosion behavior of copper under chloride-containing thin electrolyte layer[J]. Corrosion Science, 2011, 53(10): 3289-3298.
[16] LIU S, SUN H Y, SUN L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corrosion Science, 2012, 65 (5): 520-527.
[17] ZOU Y, WANG J, ZHENG Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corrosion Science, 2011, 53(1): 208-216.
[18] 刘栓, 孙虎元, 孙立娟. pH值和温度对镀锌钢在模拟锈层溶液中电化学腐蚀行为的影响[J]. 功能材料, 2013, 44 (6): 858-861. LIU S, SUN H Y, SUN L J. Effects of pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rust layer solution[J]. Journal of Functional Materials, 2013, 44 (6): 858-861.
[19] SUN H Y, ZANG B N, LIU S, et al. Effects of Zn(OH)2 on corrosion behavior of hot dipped Zn coating in freshwater[J]. Advanced Materials Research, 2012, 399-401: 152-155.
[20] SUN H Y, LIU S, SUN L J, et al. A comparative study on the corrosion of Galvanized steel under simulated rust layer solution with and without 3.5wt%NaCl[J]. International Journal of Electrochemical Science, 2013, (8): 3494-3509.