Microstructure and Hydrogen Storage Properties of Nanostructured Mg-Al Alloy from Reactive Milling with Carbon as Milling Aid
ZHANG Tong-huan1, ZHOU Shi-xue1, NIU Hai-li1, XIAO Cheng-zhu2, WANG Nai-fei1
1. College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
2. Rizhao Steel Holding Group Co., LTD., Rizhao 276806, Shandong, China
Abstract:Nanostructured Mg-Al alloy hydrogen storage material was prepared with modified anthracite as milling aid by ball milling under hydrogen atmosphere. The crystal phase structure and dehydrogenation kinetics properties of the ball milled hydrogen absorbing materials and static re-hydrogenated materials were analyzed by SEM, XRD and TPD. The results show that the modified anthracite plays a good milling aid role, after 5.5 h of milling, the average particle size of Mg-Al alloy reaches to 74 nm; The Mg in the Mg-Al alloy transforms into β-MgH2 and γ-MgH2 after reaction ball milling, whose peak dehydrogenation temperature is lower than 300 ℃. Yet, after static re-hydrogenation, the MgH2 all exists in β-MgH2 which shows a 60% increase in crystal size, and the Mg17Al12 decomposes into elementary Mg and Al. The elementary Al decreases the dehydrogenation activation energy of hydrogen storage materials, where the hydrogen level of apparent activation energy of the ball milled hydrogen storage material and re-hydrogenated material is 107.3kJ/mol and 67.1kJ/mol, respectively, calculated according to the Kissinger equation.
[1] IMAMURA H, MASANARI K, KUSUHARA M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling [J]. Journal of Alloys and Compounds, 2005, 386(1-2): 211-216.
[2] NARAYANAN D L, LUEKING A D. Mechanically milled coal and magnesium composites for hydrogen storage [J]. Carbon, 2007, 45(4): 805-820.
[3] 胡秀颖, 周仕学, 王振华, 等. 球磨时间对镁碳复合储氢材料结构和性能的影响[J]. 功能材料, 2008, 39 (3): 424-429.HU X Y, ZHOU S X, WANG Z H, et al. Effect of ball milling time on the structure and properties of Mg-C composites for hydrogen storage [J]. Journal of Functional Materials, 2008, 39 (3):424-429.
[4] 卢国俭, 周仕学, 马怀营, 等. 反应球磨法制备镁/碳纳米复合储氢材料[J]. 功能材料, 2007, 38(7): 1128-1131. LU G J, ZHOU S X, MA H Y, et al. Preparation of magnesium/carbon nanocomposites for hydrogen storage by reaction milling[J]. Journal of Functional Materials, 2007, 38(7): 1128-1131.
[5] CRIVELLO J C, NOBUKI T, KUJI T. Improvement of Mg-Al alloys for hydrogen storage applications [J]. International Journal of Hydrogen Energy, 2009, 34: 1937-1943.
[6] JIANG J J, WEI J, LENG H Y. Effect of Al on the hydrogen storage properties of Mg(BH4)2 [J]. International Journal of Hydrogen Energy, ISSN:03603199; DOI:10.1016/j.ijhydene.2013.01. 093
[7] 肖学章, 陈立新, 刘广成, 等. 球磨Mg17Al12纳米晶/非晶合金的微结构和储氢性能[J]. 西安交通大学学报, 2007, 41(11): 1368-1372. XIAO X Z, CHEN L X, LIU G C, et al. Microstructures and hydrogen storage characteristics of nanocrystal/amorphous Mg17Al12 alloy prepared by ball milling[J]. Journal of Xi'an Jiaotong University, 2007, 41(11): 1368-1372.
[8] HUANG L W, ELKEDIM O, NOWAK M, et al. Synergistic effects of multiwalled carbon nanotubes and Al on the electrochemical hydrogen storage properties of Mg2Ni-type alloy prepared by mechanical alloying[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1538-1545.
[9] BOUOUDINA M, GUO Z X. Comparative study of mechanical alloying of (Mg+Al) and (Mg+Al+Ni) mixtures for hydrogen storage [J]. Journal of Alloys and Compounds, 2002, 336(1-2): 222-231.
[10] PALMA A S, ITURBE G, JOSE L, et al. MgAl alloy synthesis, characterization and its use in hydrogen storage[J]. International Journal of Hydrogen Energy, 2010, 35(21): 12120-12124.
[11] 谢昭明, 付安庆, 陈玉安, 等. Al的添加对Mg2Ni储氢合金结构和氢扩散能力的影响研究 [J]. 功能材料, 2006, 37(4): 601-603. XIE Z M, FU A Q, CHEN Y A, et al. Effect of Al addition on microstructure and hydrogen diffusion capability of Mg2Ni alloy[J]. Journal of Functional Materials, 2006, 37(4): 601-603.
[12] 王美涵, 张连中, 孙立贤, 等. Mg1.75Al0.25Ni1-xCrx(0≤x≤0.2)合金的制备及其性能[J]. 高等学校化学学报, 2005, 26(10):1877- 1880. WANG M H, ZHANG L Z, SUN L X, et al. Preparation and properties of Mg1.75Al0.25Ni1-xCrx(0≤x≤0.2) alloys[J]. Chemical Journal of Chinese Universities, 2005, 26(10): 1877-1880.
[13] 罗翔, 郑坊平, 王春涛, 等. 添加Ti0.9Zr0.1Mn1.5复合球磨对Ti9.6V86.4Fe4合金储氢性能的影响[J]. 西安交通大学学报, 2007, 41(12):1491-1494. LUO X, ZHENG F P, WANG C T, et al. Influence of composite ball milling with Ti0.9Zr0.1Mn1.5 on hydrogen storage properties of Ti9.6V86.4Fe4 alloy [J]. Journal of Xi'an Jiaotong University, 2007, 41(12): 1491-1494.
[14] BORTZ M, BERTHEVILLE B, BOTTGER G. Structure of the high pressure phase λ-MgH2 by neutron powder diffraction [J]. Journal of Alloys and Compounds, 1999, 287: L4-L6.
[15] ZHOU S X, CHEN H P, DING C, et al. Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium [J]. Fuel, 2012, 109: 68-75.
[16] 许娟, 李鹏飞, 郭锋. 热处理对 AZ91D 镁合金相结构的影响[J]. 材料热处理学报, 2011, 32(4): 30-33. XU J, LI P F, GUO F. Effect of heat treatment on microstructure of AZ91D alloy [J]. Transactions of Materials and Heat Treatment, 2011, 32(4): 30-33.
[17] 李武会, 田保红, 马坪, 等. ScMn2 合金贮氢(氘)性能[J]. 金属学报, 2012, 48(7): 822-829. LI W H, TIAN B H, MA P, et al. Hydrogen storage properties of ScMn2 alloy [J]. Acta Metallurgica Sinica, 2012, 48(7): 822-829.
[18] 余学斌, 陈金舟, 吴铸, 等. Cr含量对TiMn1.2-xCrxV0.25Fe0.05 合金吸/放氢性能的影响[J]. 金属学报, 2004, 40(5): 527-530. YU X B, CHEN J Z, WU Z, et al. Effect of Cr content on the sorption performance of TiMn1.2-xCrxV0.25Fe0.05 alloys [J]. Acta Metallurgica Sinica, 2004, 40(5): 527-530.