Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 54-59    DOI: 10.11868/j.issn.1001-4381.2015.03.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
2A12与2A11铝合金超声波焊接工艺与组织研究
谢俊峰1,2, 朱有利1, 黄元林1, 白昶3
1. 装甲兵工程学院 装备再制造工程系, 北京 100072;
2. 中国人民解放军65331部队, 吉林 吉林 132012;
3. 中国北方车辆研究所, 北京 100072
Researches on Process and Microstructure of 2A12 and 2A11 Aluminum Ultrasonic Welds
XIE Jun-feng1,2, ZHU You-li1, HUANG Yuan-lin1, BAI Chang3
1. Faculty of Remanufacturing Engineering, Academy of Armored Force Engineering, Beijing 100072, China;
2. No.65331 Unit, PLA, Jilin 132012, Jilin, China;
3. China North Vehicle Research Institute, Beijing 100072, China
全文: PDF(4530 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对2A12-T3 和2A11-O铝合金进行了超声波焊接,研究了不同超声波焊接工艺参数对焊接界面结合状况的影响。采用扫描电镜、电子背散射衍射和透射电镜研究了焊接界面的组织结构。结果表明,当超声波焊接振幅为30μm,焊接时间为0.2s,焊接界面结合状况较好,焊接界面的线性焊接密度接近100%。氩气保护也会对线性焊接密度产生影响。当焊接振幅为15μm时,氩气保护可提高线性焊接密度;但当焊接振幅为30μm, 氩气保护对线性焊接密度无明显影响。超声波焊接过程中,焊接界面上产生波纹和漩涡状塑性流动,发生动态回复和连续动态再结晶,形成由位错缠结、位错胞、亚晶和细小晶粒组成的焊接界面组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢俊峰
朱有利
黄元林
白昶
关键词 超声波焊接线性焊接密度氩气保护塑性流动连续动态再结晶    
Abstract:Ultrasonic welding of 2A12-T3 and 2A11-O aluminum alloy was carried out and effects of ultrasonic welding parameters on the welded interface bonding were studied. The welded interface microstructure was investigated via scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). Results show that favorable welded interface bonding with a linear weld density approaching 100% is obtained at ultrasonic welding vibration amplitude of 30μm and welding duration of 0.2s. Argon shield shows influence on the linear weld density. When the vibration amplitude is 15m, argon shield can improve the linear weld density; when the vibration amplitude is 30m, argon shield has no obvious influence on the linear weld density. Ultrasonic welding bring about ripple or vortices plastic flow at the welded interface, with accompanying dynamic recovery and continuous dynamic recrystallization, which result in the welded interface microstructure consisting of dislocation tanglings, dislocation cells, sub-grains and fine grains.
Key wordsultrasonic welding    linear weld density    argon shield    plastic flow    continuous dynamic recrystallization
收稿日期: 2013-06-09      出版日期: 2015-03-20
中图分类号:  TG174.4  
基金资助:北京市自然科学基金资助项目(3093027)
通讯作者: 朱有利(1962-),男,教授,主要从事疲劳延寿技术研究,联系地址:北京市长辛店杜家坎21号装甲兵工程学院装备再制造系313 (100072),youlizhu@sina.com     E-mail: youlizhu@sina.com
引用本文:   
谢俊峰, 朱有利, 黄元林, 白昶. 2A12与2A11铝合金超声波焊接工艺与组织研究[J]. 材料工程, 2015, 43(3): 54-59.
XIE Jun-feng, ZHU You-li, HUANG Yuan-lin, BAI Chang. Researches on Process and Microstructure of 2A12 and 2A11 Aluminum Ultrasonic Welds. Journal of Materials Engineering, 2015, 43(3): 54-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.03.010      或      http://jme.biam.ac.cn/CN/Y2015/V43/I3/54
[1] KOU S D. Welding Metallurgy[M]. New Jersey: John Wiley & Sons, 2002. 126-128.
[2] 崔俊华, 柯黎明, 刘文龙, 等. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, (12): 11-17. CUI Jun-hua, KE Li-ming, LIU Wen-long, et al. Thermo-mechanical coupled finite element model for whole process of friction stir welding[J]. Journal of Materials Engineering, 2014, (12): 11-17.
[3] 黄嘉, 季英萍, 秦丽晔, 等. GH4169合金惯性摩擦焊焊接接头疲劳裂纹扩展性能[J]. 航空材料学报, 2013, 33(6): 45-50. HUANG Jia, JI Ying-ping, QIN Li-ye, et al. Fatigue crack growth behavior of inertia friction welded joints of GH4169 alloy[J]. Journal of Aeronautical Materials, 2013, 33(6): 45-50.
[4] 曾纯, 朱政强, 陈长青, 等. 超声波金属焊接中的温度与应力分布[J].上海交通大学学报, 2010, 44(10): 54-57.ZENG C, ZHU Z Q, CHEN C Q, et al. Temperature and stress sistribution in ultrasonic metal welding[J]. Journal of Shanghai Jiao Tong University, 2010, 44(10): 54-57.
[5] DANIELS HPC. Ultrasonic welding[J]. Ultrasonics, 1965, 3(4): 190-196.
[6] KONG C Y, SOAR R C, DICKENS P M. Characterisation of aluminium alloy 6061 for the ultrasonic consolidation process[J]. Materials Science and Engineering A, 2003, 363(1-2): 99-106.
[7] JANAKI R G D, YANG Y, STUCKER B E. Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003[J]. Journal of Manufacturing Systems, 2006, 25(3): 221-237.
[8] BAKAVOS D, PRANGNELL P B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet[J]. Materials Science and Engineering A, 2010, 527(23): 6320-6334.
[9] 熊志林, 朱政强, 吴宗辉, 等. 6061铝合金超声波焊接接头组织与性能研究[J]. 热加工工艺, 2011, 40(17): 130-132.XIONG Z L, ZHU Z Q, WU Z H, et al. Microstructure and properties of 6061 aluminium alloy welded joint by ultrasonic welding[J]. Hot Working Technology, 2011, 40(17): 130-132.
[10] 涂益民, 邱然锋, 石红信, 等. 轻金属材料超声波焊接的研究现状[J]. 轻合金加工技术, 2011, 39(1): 16-20. TU Y M, QIU R F, SHI H X, et al. Research situations of ultrasonic welding of light metals[J]. Light Alloy Fabrication Technology, 2011, 39(1):16-20.
[11] YANG Y, JANAKI R G D, STUCKER B E. Bond formation and fiber embedment during ultrasonic consolidation[J]. Journal of Materials Processing Technology, 2009, 209(10): 4915-4924.
[12] JAHN R, COOPER R, WILKOSZ D. The effect of Anvil geometry and welding energy on microstructures in ultrasonic spot welds of AA6111-T4 [J]. Metallurgical and Materials Transactions A, 2007, 38(3): 570-583.
[13] HUMPHREYS F J, HATHERLY M. Recrystallization and Related Annealing Phenomena[M]. Oxford: Pergamon Press, 2004. 415-416.
[14] SU J Q, NELSON T W, MISHRA R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713-729.
[15] MARIANI E, GHASSEMIEH E. Microstructure evolution of 6061 O Al alloy during ultrasonic consolidation: An insight from electron backscatter diffraction [J]. Acta Materialia, 2010, 58(7):2492-2503.
[1] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[2] 梁志鸿, 李建, 阚前华, 康国政. 形状记忆聚氨酯热力耦合变形行为实验和有限元模拟[J]. 材料工程, 2019, 47(10): 133-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn