Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 78-82    DOI: 10.11868/j.issn.1001-4381.2015.03.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
TC4钛合金低压真空氮化改性层的制备与性能
杨闯1,2, 彭晓东1, 刘静2, 马亚芹2, 王华2
1. 重庆大学 材料科学与工程学院, 重庆 400044;
2. 贵州师范大学 材料与建筑工程学院, 贵阳 550025
Preparation and Property of Low Pressure Vacuum Nitriding Modified Layer on TC4 Titanium Alloy
YANG Chuang1,2, PENG Xiao-dong1, LIU Jing2, MA Ya-qin2, WANG Hua2
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2. School of Materials and Architecture Engineering, Guizhou Normal University, Guiyang 550025, China
全文: PDF(2211 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用低压真空渗氮的方法,在TC4钛合金表面制备了与基体结合良好的改性层。通过金相观察、X射线衍射(XRD)和扫描电镜(SEM)分析了表面改性层的组织结构,并对改性层的显微硬度及耐磨性进了测试。结果表明:TC4钛合金经低压真空渗氮处理后,表面可获得由TiN和Ti2AlN组成的氮化物改性层,组织均匀致密,氮化物颗粒细小,硬化层与基体结合良好,表面硬度为1100~1200HV,心部硬度为300~320HV,硬化层深度可达60~70μm,硬度梯度平缓,耐磨性优良。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨闯
彭晓东
刘静
马亚芹
王华
关键词 TC4钛合金低压真空渗氮组织性能    
Abstract:A modified layer with good bonding strength with substrate was prepared on the surface of TC4 titanium alloy by low pressure vacuum nitriding treatment. The microstructure of surface modified layer was analyzed by optical microscopy, X-ray diffractometry (XRD), scanning electron microscopy (SEM), the microhardness and wear resistance of the modified layer was measured. The results show that a surface nitrides modified layer composed of TiN and Ti2AlN can be obtained by low pressure vacuum nitriding treatment, the microstructure is uniform and compact, with fine nitride particles, the hardened layer has a good bonding strength with its substrate, the surface hardness is 1100-1200 HV, and the hardness in the core is 300-320 HV, the depth of the hardened layer can reach 60-70μm, the hardness gradient of nitrided layer is smooth, and it has superior wear resistance.
Key wordsTC4 titanium alloy    low pressure vacuum nitriding    microstructure    property
收稿日期: 2013-11-28     
1:  TG146.2  
基金资助:贵州省科学技术基金项目(J20132220)
通讯作者: 彭晓东(1959-),男,教授,博士生导师,从事快速凝固与喷射沉积等研究工作,联系地址:重庆市沙坪坝正街174号重庆大学图书馆(400044),pxd@cqu.edu.cn     E-mail: pxd@cqu.edu.cn
引用本文:   
杨闯, 彭晓东, 刘静, 马亚芹, 王华. TC4钛合金低压真空氮化改性层的制备与性能[J]. 材料工程, 2015, 43(3): 78-82.
YANG Chuang, PENG Xiao-dong, LIU Jing, MA Ya-qin, WANG Hua. Preparation and Property of Low Pressure Vacuum Nitriding Modified Layer on TC4 Titanium Alloy. Journal of Materials Engineering, 2015, 43(3): 78-82.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.03.014      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I3/78
[1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4): 44-50.ZHU Z S.Recent research and development of titanium alloys for aviation application in China[J].Journal of Aeronautical Materials, 2014, 34(4): 44-50.
[2] CHEN J M, GUO C, ZHOU J S, et al. Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (9): 2171-2178.
[3] 杨闯, 彭晓东. Ti6A14V钛合金真空热氧化组织与性能[J]. 材料热处理学报, 2013, 34(9): 173-176.YANG C, PENG X D. Microstructure and property of vacuum oxidation on Ti6A14V titanium alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(9): 173-176.
[4] CHEN Y N, WEI J F, ZHAO Y Q, et al. Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1018-1022.
[5] IORDANOVA I, KELLY P J, MIRCHEV R, et al. Crystallography of magnetron sputtered TiN coatings on steel substrates[J]. Vacuum, 2007, 81(7): 830-842.
[6] 郝建军, 彭海滨, 黄继华. 钛合金表面反应电火花沉积TiN/Ti复合涂层[J]. 焊接学报, 2009, 30(11): 69-72. HAO J J, PENG H B, HUANG J H, et al. TiN/Ti composite coating deposited on titanium alloy substrate by reactive electric-spark[J]. Transactions of the China Welding Institution, 2009, 30(11): 69-72.
[7] BHADURI D, CHATTOPADHYAY A K. Study on the role of PVD TiN coating in improving the performance of electroplated monolayer superabrasive wheel[J]. Surface and Coatings Technology, 2010, 205(2): 658-667.
[8] XIA F F, LIU C, WANG F, et al, Preparation and characterization of Nano Ni-TiN coatings deposited by ultrasonic electrodeposition[J]. Journal of Alloys and Compounds, 2010, 49(2): 431-435.
[9] 赵斌, 吴建生, 孙坚, 等. TiAl基合金高温气体渗氮[J]. 金属学报, 2001, 37(8): 837-840.ZHAO B, WU J S, SUN J, et al. High-temperature gas nitridation of TiAl based alloys[J]. Acta Metallurgica Sinica, 2001, 37(8): 837-840.
[10] 郭爱红, 崔文芳, 刘向宏, 等. α+β型生物钛合金磁控溅射TiN涂层磨损性能[J]. 稀有金属材料与工程, 2009, 38(3): 473-476. GUO A H, CUI W F, LIU X H, et al. Wear Properties of magnetron sputtering TiN coating on α+β type biomedical Ti6Al7Nb alloy[J]. Rare Metal Materials and Engineering, 2009, 38(3): 473-476.
[11] 唐光昕, 朱张校, 丁莲珍, 等. 离子轰击处理的TC11钛合金表面组织与性能[J]. 清华大学学报:自然科学版, 2002, 42(4): 491-493. TANG G X, ZHU Z X, DING L Z, et al. Surface ionic bombarding treatment of TC11 titanium alloy[J]. Journal of Tsinghua University: Science and Technology, 2002, 42(4): 491-493.
[12] PEREZ M G, HARLAN N R, ZAPIRAIN F, et al. Laser nitriding of an intermetallic TiAl alloy with a diode laser[J]. Surface and Coatings Technology, 2006, 200(17): 5152-5159.
[13] JIANG P, HE X L, LI X X, et al. Wear resistance of a laser surface alloyed Ti6Al4V alloy [J]. Surface and Coatings Technology, 2000, 130(1): 24-28.
[14] ABBOUD J H, FIDEL A F, BENVOUNIES K Y. Surface nitriding of Ti6Al4V alloy with a high power CO2 laser [J]. Optics and Laser Technology, 2008, 40(2): 405-414.
[15] 张晓伟, 刘洪喜, 蒋业华, 等. 激光原位合成TiN/Ti3Al基复合涂层[J]. 金属学报, 2011, 47(8): 1086-1093. ZHANG X W, LIU H X, JIANG Y H, et al. Laser in situ synthesized TiN/Ti3Al composite coatings[J]. Acta Metallurgica Sinica, 2011, 47(8): 1086-1093.
[16] THONDTEM S, THONGTEM T, MCNALLAN M. High temperature nitridation and oxidation of Ti based alloys[J]. Surface and Interface Analysis, 2001, 32 (1): 306-309.
[17] MAGNAN J, WEATHERLY G, CHEVNRT M. The nitriding behavior of Ti-Al alloys at 1000℃ [J]. Metallurgical and Materials Transactions A, 1999, 30(19): 19-29.
[1] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[2] 杨海青, 李青, 肖程波, 胡聘聘, 林山峰. Re及时效时间对耐腐蚀镍基定向合金组织和持久寿命的影响[J]. 材料工程, 2015, 43(6): 31-37.
[3] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[4] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[5] 李小强, 敖敬培, 李子阳, 李力, 屈盛官. CuMnNiCo钎料钎焊MGH956合金接头组织及力学性能研究[J]. 材料工程, 2015, 43(5): 21-26.
[6] 杨可, 杨克, 包晔峰. 氮合金化堆焊硬面合金的耐腐蚀性能研究[J]. 材料工程, 2015, 43(5): 33-37.
[7] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[8] 卢林刚, 陈英辉, 程哲, 杨守生, 邵高耸. 新型无卤膨胀/MH阻燃环氧树脂的制备及阻燃性能[J]. 材料工程, 2015, 43(5): 50-55.
[9] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[10] 卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
[11] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[12] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
[13] 巴淼, 张占平, 齐育红. 甲基硅油对有机硅防污涂层表界面特性的影响[J]. 材料工程, 2015, 43(4): 59-65.
[14] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[15] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn