Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 83-90    DOI: 10.11868/j.issn.1001-4381.2015.03.015
  综述 本期目录 | 过刊浏览 | 高级检索 |
可见光活性氮掺杂纳米二氧化钛研究进展
曹文斌, 许军娜, 刘文秀, 孙芃, 张欣
北京科技大学 材料科学与工程学院, 北京 100083
Research Progress on Visible Light Active Nitrogen Doped Nano-TiO2
CAO Wen-bin, XU Jun-na, LIU Wen-xiu, SUN Peng, ZHANG Xin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1492 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 氮掺杂可拓宽TiO2的光响应范围和实现可见光响应、增强其对太阳光能的利用和提高它的光催化效率而成为该领域关注的焦点。本文综述了氮掺杂对TiO2能带结构的影响及氮掺杂纳米TiO2薄膜和粉体的制备方法等方面的研究进展,总结了该领域研究中亟待解决的问题并对今后的发展提出了作者的思考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹文斌
许军娜
刘文秀
孙芃
张欣
关键词 氮掺杂二氧化钛能带结构制备方法可见光    
Abstract:Nitrogen doped TiO2 has attracted much attention as nitrogen doping can widen its photo response range, realize its visible light response, improve the utilization of solar light energy and further increase its photocatalytic efficiency. The effect of nitrogen doping on the band structure in the TiO2 and the research progress on the preparation method of nitrogen doped TiO2 film and powder were reviewed. The current problems needed to be solved were summarized, and some thinking on the future development was also put forward.
Key wordsnitrogen doped TiO2    band structure    preparation method    visible light
收稿日期: 2014-03-20      出版日期: 2015-03-20
中图分类号:  O644  
基金资助:国家高技术发展研究计划(2012AA030302);国家自然科学基金(51072019)
通讯作者: 曹文斌(1970-),男,教授,博士生导师,现主要从事光催化材料制备及产业化应用方面的研究,联系地址:北京科技大学材料科学与工程学院(100083),wbcao@ustb.edu.cn     E-mail: wbcao@ustb.edu.cn
引用本文:   
曹文斌, 许军娜, 刘文秀, 孙芃, 张欣. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3): 83-90.
CAO Wen-bin, XU Jun-na, LIU Wen-xiu, SUN Peng, ZHANG Xin. Research Progress on Visible Light Active Nitrogen Doped Nano-TiO2. Journal of Materials Engineering, 2015, 43(3): 83-90.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.03.015      或      http://jme.biam.ac.cn/CN/Y2015/V43/I3/83
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[2] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. Journal of Chemical Physics, 1977, 81(15): 1484-1488.
[3] ZHANG J L, WU Y M, XING M Y, et al. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides[J]. Energy & Enviromental Science, 2010, (3): 715-726.
[4] QIU X F, BURDA C. Chemically synthesized nitrogen-doped metal oxide nanoparticles[J]. Chemical Physics, 2007, 339(1-3): 1-10.
[5] SATO S . Photocatalytic activity of NO<em>x-doped TiO2 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1-2):126-128.
[6] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[7] VARLEY J B, JANOTTI A, VAN De WALLE C G. Mechanism of visible-light photocatalysis in nitrogen-doped TiO2[J]. Advanced Materials, 2011, 23(20):2343-2347.
[8] LONG R, ENGLISH N J. Synergistic effects on band gap narrowing in titania by co-doping from first-principles calculations[J]. Chemistry of Materials, 2012, 22:1616-1623.
[9] 黄佐财, 冯晶, 潘伟. 氮掺杂锐钛矿TiO2的电子结构与光学性质的第一性原理计算[J]. 稀有金属材料与工程, 2011, 40: 475-477.HUANG Z C, FENG J, PAN W. Electronic structure and optical properties of N-doped anatase TiO2 by first principles calculations[J]. Rare Metal Materials and Engineering, 2011, 40: 475-477.
[10] XIANG Q J, YU J G, WANG W G, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity[J]. Chemical Communications, 2011, 47: 6906-6908.
[11] GAO H T, ZHOU J, DAI D M, et al. Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: a combined experimental theoretical study[J]. Chemical Engineering Technology, 2009, 32: 867-872.
[12] JOUNG S K, AMEMIY T, MURABAYASHI M, et al. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts[J]. Chemistry, 2006, 12:5526-5534.
[13] IRIE H, WANTANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. Journal of Physical Chemistry B, 2003, 107(23): 5483-5486.
[14] NAKAMURA R, TANAKA T, NAKATO Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes[J]. Journal of Physical Chemistry B, 2004, 108(30): 10617-10620.
[15] LEE J Y, PARK J, CHO J H. Electronic properties of N and C doped TiO2[J]. Applied Physics Letters, 2005, 87(1):011904 (3 pages).
[16] YANG K S, DAI Y, HUANG B B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first principles calculation[J]. Journal of Physical Chemistry C, 2007, 111: 12086-12090.
[17] 张学军, 张光富, 金辉霞, 等. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究[J]. 物理学报, 2013, 62(1): 017102. ZHANG X J, ZHANG G F, JIN H X, et al. First principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt[J]. Acta Physico-Chimica Sinica, 2013, 62(1): 017102.
[18] VALENTIN C D, PACCHIONI G, SELLONI A, et al. Characterization of paramagnetic species in N-Doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. Journal of Physical Chemistry B, 2005, 109(23): 11414-11419.
[19] NAKAMURA I, NEGISHI N, KUTSUNA S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(1-2): 205-212.
[20] GRACIANI J, ALVAREZ L J, RODRIGUEZ J A, et al. N doping of rutile TiO2 (101) surface a theoretical DFT study[J]. Journal of Physical Chemistry C, 2008, 112: 2624-2631.
[21] FINAZZI E, VALENTIN C D, SELLONI A. Frist principle study of nitrogen doping at the anatase TiO2 (101) surface[J]. Journal of Physical Chemistry C, 2007, 111: 9275-9282.
[22] WANGA Y, DOREN D J. First-principles calculations on TiO2 doped by N, Nd, and vacancy[J]. Solid State Communications, 2005, 136(3):186-189.
[23] LIN Z, ORLOV A, LAMBERT R M, et al. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2[J]. Journal of Physical Chemistry B, 2005, 109(44): 20948-20952.
[24] IHARA T, MIYOSHI M, IRIYAMA Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B: Environmental, 2003, 42(4): 403-409.
[25] ZHANG Z Z, LONG J L, XIE X Q, et al. Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction[J]. Applied Catalysis A: General, 2012, 425-426: 117-124.
[26] LIVRAGHI S, PAGANINI M C, GIAMELLO E, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light[J]. Journal of the American Chemical Society, 2006, 128(49): 15666-15671.
[27] ZHANG J W, WANG Y, JIN Z S, et al. Visible-light photocatalytic behavior of two different N-doped TiO2[J]. Applied Surface Science, 2008, 254: 4462-4466.
[28] AMADELLI R, SAMIOLO L, BORSA M, et al. N-TiO2 Photocatalysts highly active under visible irradiation for NO<em>x abatement and 2-propanol oxidation[J]. Catalysis Today, 2013, 206: 19-25.
[29] WANG Y, FENG C X, ZHANG M, et al. Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity[J]. Applied Catalysis B: Environmental, 2011, 104(3-4): 268-274.
[30] ZHU L, XIE J, CUI X, et al. Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiN<em>x films[J]. Vacuum, 2010, 84(6): 797-802.
[31] SERIO S, MELO JORGE M E, NUNES Y, et al. Incorporation of N in TiO2 films grown by DC-reactive magnetron sputtering[J]. Nuclear Instruments and Methods in Physics Research B, 2012, 273(15): 109-112.
[32] SUDA Y, KAWASAKI H, UEDA T. Preparation of nitrogen doped titanium oxide thin films using a PLD method as parameters of target material and nitrogen ratio in nitrogen/oxygen gas mixture[J]. Thin Solid Films, 2005, 476: 337-341.
[33] SOCOL G, GNATYUK Y, STEFAN N, et al. Photocatalytic activity of pulsed laser deposited TiO2 thin films in N2, O2 and CH4[J]. Thin Solid Films, 2010, 518(16): 4648-4653.
[34] SARANTOPOULOS C, GLEIZES A N, MAURY F. Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates[J]. Thin Solid Films, 2009, 518: 1299-1303.
[35] DUNNILL C W, PARKIN I P. N-doped titania thin films prepared by atmospheric pressure CVD using t-butylamine as the nitrogen source: enhanced photocatalytic activity under visible light[J]. Chemical Vapor Deposition, 2009, 15(7-9) :171-174.
[36] SONI S S, HENDERSON M J, BARDEAU J F, et al. Visible-light photocatalysis in titania-based mesoporous thin films[J]. Advanced Materials, 2008, 20(8): 1493-1498.
[37] CHEKINIA M, MOHAMMADIZADEH M R, VAEZ ALLAEI S M. Photocatalytic and superhydrophilicity properties of N-doped TiO2 nanothin films[J]. Applied Surface Science, 2011, 257(16): 7179-7183.
[38] WANG Y, FENG C X, ZHANG M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen[J]. Applied Catalysis B: Environmental, 2010, 100(1-2): 84-90.
[39] LI Y H, CAO W B, RAN F Y, et al. Photocatalytic degradation of methylene blue aqueous solution under visible light irradiation by using N-doped titanium dioxide[J]. Key Engineering Materials, 2007, 336-338: 1972-1975.
[40] CHENG X W, YU X J, XING Z P. Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity[J]. Applied Surface Science, 2012, 258(7): 3244-3248.
[41] BARUWATI B, VARMA R S. Synthesis of N-doped nano TiO2 using guanidine nitrate: an excellent visible light photocatalyst[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(3): 2036-2041.
[42] YU B Y, LAU W M, YANG J. Preparation and characterization of N-TiO2 photocatalyst with high crystalline and enhanced photocatalytic inactivation of bacteria[J]. Nanotechnology, 2013, 24(33): 335705.
[43] D'ARIENZO M, SCOTTI R, WAHBA L, et al. Hydrothermal N-doped TiO2: explaining photocatalytic properties by electronic and magnetic identification of N active sites[J]. Applied Catalysis B: Environmental, 2009, 93(1-2): 149-155.
[44] HUANG D G , LIAO S J , QUAN S Q, et al. responsive N-TiO2 mixed crystal by a modified hydrothermal process[J]. Journal of Non-Crystalline Solids, 2008, 354(33): 3965-3972.
[45] HU S Z, WANG A J, LI X, et al. Hydrothermal synthesis of well dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light[J]. Journal of Physics and Chemistry of Solids, 2010, 71(3):156-162.
[46] WU D Y, LONG M, CAI W M, et al. Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible light activity[J]. Journal of Alloy and Compounds, 2010, 502: 289-294.
[47] XU J N, LIU Q, LIN S F, et al. One-step synthesis of nanocrystalline N-doped TiO2 powders and their photocatalytic activity under visible light irradiation[J]. Research on Chemical Intermediates, 2013, 39(4):1655-1664.
[48] XU J N, WANG F, LIU W X, et al. Nanocrystalline N-doped TiO2 powders: mild hydrothermal synthesis and photocatalytic degradation of phenol under visible light irradiation[J]. International Journal of Photoenergy, 2013, Article ID 616139, 7 pages.
[49] LIU W X, LIU Q , LI X F, et al. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe, N) co-doped TiO2 powders[J]. Science China Technological Sciences, 2010, 53:1477-1482.
[50] KHAN M, XU J N, CHEN N, et al. First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2[J]. Journal of Alloys and Compounds, 2012, 513:539-545.
[51] KHAN M, CAO W B, CHEN N, et al. Ab-initio calculations of synergistic chromium nitrogen codoping effects on the electronic and optical properties of anatase TiO2[J]. Vacuum, 2013, 92:32-38.
[1] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[2] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[3] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[4] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[5] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[6] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[7] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[8] 李莹莹, 王昉, 刘其春, 张东敏, 张雪, 马青玉, 顾正桂. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
[9] 周锋, 任向红, 刘建友, 刘嫔. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19.
[10] 崔贺帅, 郑彧, 刘杏娥, 杨淑敏, 田根林, 马建锋. 生物质基SiC陶瓷制备的研究进展[J]. 材料工程, 2017, 45(8): 115-122.
[11] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[12] 胡圣飞, 魏文闵, 刘清亭, 张荣. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3): 28-34.
[13] 陈永星, 朱胜, 王晓明, 杜文博, 张垚. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138.
[14] 伏春平. 掺杂单层MoS2电子结构的第一性原理计算[J]. 材料工程, 2016, 44(12): 80-83.
[15] 孙爱娟, 方芬. 磁性纳米流体及其终端技术应用[J]. 材料工程, 2015, 43(9): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn