Abstract:Nitrogen doped TiO2 has attracted much attention as nitrogen doping can widen its photo response range, realize its visible light response, improve the utilization of solar light energy and further increase its photocatalytic efficiency. The effect of nitrogen doping on the band structure in the TiO2 and the research progress on the preparation method of nitrogen doped TiO2 film and powder were reviewed. The current problems needed to be solved were summarized, and some thinking on the future development was also put forward.
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[2] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. Journal of Chemical Physics, 1977, 81(15): 1484-1488.
[3] ZHANG J L, WU Y M, XING M Y, et al. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides[J]. Energy & Enviromental Science, 2010, (3): 715-726.
[4] QIU X F, BURDA C. Chemically synthesized nitrogen-doped metal oxide nanoparticles[J]. Chemical Physics, 2007, 339(1-3): 1-10.
[5] SATO S . Photocatalytic activity of NO<em>x-doped TiO2 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1-2):126-128.
[6] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[7] VARLEY J B, JANOTTI A, VAN De WALLE C G. Mechanism of visible-light photocatalysis in nitrogen-doped TiO2[J]. Advanced Materials, 2011, 23(20):2343-2347.
[8] LONG R, ENGLISH N J. Synergistic effects on band gap narrowing in titania by co-doping from first-principles calculations[J]. Chemistry of Materials, 2012, 22:1616-1623.
[9] 黄佐财, 冯晶, 潘伟. 氮掺杂锐钛矿TiO2的电子结构与光学性质的第一性原理计算[J]. 稀有金属材料与工程, 2011, 40: 475-477.HUANG Z C, FENG J, PAN W. Electronic structure and optical properties of N-doped anatase TiO2 by first principles calculations[J]. Rare Metal Materials and Engineering, 2011, 40: 475-477.
[10] XIANG Q J, YU J G, WANG W G, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity[J]. Chemical Communications, 2011, 47: 6906-6908.
[11] GAO H T, ZHOU J, DAI D M, et al. Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: a combined experimental theoretical study[J]. Chemical Engineering Technology, 2009, 32: 867-872.
[12] JOUNG S K, AMEMIY T, MURABAYASHI M, et al. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts[J]. Chemistry, 2006, 12:5526-5534.
[13] IRIE H, WANTANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. Journal of Physical Chemistry B, 2003, 107(23): 5483-5486.
[14] NAKAMURA R, TANAKA T, NAKATO Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes[J]. Journal of Physical Chemistry B, 2004, 108(30): 10617-10620.
[15] LEE J Y, PARK J, CHO J H. Electronic properties of N and C doped TiO2[J]. Applied Physics Letters, 2005, 87(1):011904 (3 pages).
[16] YANG K S, DAI Y, HUANG B B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first principles calculation[J]. Journal of Physical Chemistry C, 2007, 111: 12086-12090.
[17] 张学军, 张光富, 金辉霞, 等. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究[J]. 物理学报, 2013, 62(1): 017102. ZHANG X J, ZHANG G F, JIN H X, et al. First principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt[J]. Acta Physico-Chimica Sinica, 2013, 62(1): 017102.
[18] VALENTIN C D, PACCHIONI G, SELLONI A, et al. Characterization of paramagnetic species in N-Doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. Journal of Physical Chemistry B, 2005, 109(23): 11414-11419.
[19] NAKAMURA I, NEGISHI N, KUTSUNA S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(1-2): 205-212.
[20] GRACIANI J, ALVAREZ L J, RODRIGUEZ J A, et al. N doping of rutile TiO2 (101) surface a theoretical DFT study[J]. Journal of Physical Chemistry C, 2008, 112: 2624-2631.
[21] FINAZZI E, VALENTIN C D, SELLONI A. Frist principle study of nitrogen doping at the anatase TiO2 (101) surface[J]. Journal of Physical Chemistry C, 2007, 111: 9275-9282.
[22] WANGA Y, DOREN D J. First-principles calculations on TiO2 doped by N, Nd, and vacancy[J]. Solid State Communications, 2005, 136(3):186-189.
[23] LIN Z, ORLOV A, LAMBERT R M, et al. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2[J]. Journal of Physical Chemistry B, 2005, 109(44): 20948-20952.
[24] IHARA T, MIYOSHI M, IRIYAMA Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B: Environmental, 2003, 42(4): 403-409.
[25] ZHANG Z Z, LONG J L, XIE X Q, et al. Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction[J]. Applied Catalysis A: General, 2012, 425-426: 117-124.
[26] LIVRAGHI S, PAGANINI M C, GIAMELLO E, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light[J]. Journal of the American Chemical Society, 2006, 128(49): 15666-15671.
[27] ZHANG J W, WANG Y, JIN Z S, et al. Visible-light photocatalytic behavior of two different N-doped TiO2[J]. Applied Surface Science, 2008, 254: 4462-4466.
[28] AMADELLI R, SAMIOLO L, BORSA M, et al. N-TiO2 Photocatalysts highly active under visible irradiation for NO<em>x abatement and 2-propanol oxidation[J]. Catalysis Today, 2013, 206: 19-25.
[29] WANG Y, FENG C X, ZHANG M, et al. Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity[J]. Applied Catalysis B: Environmental, 2011, 104(3-4): 268-274.
[30] ZHU L, XIE J, CUI X, et al. Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiN<em>x films[J]. Vacuum, 2010, 84(6): 797-802.
[31] SERIO S, MELO JORGE M E, NUNES Y, et al. Incorporation of N in TiO2 films grown by DC-reactive magnetron sputtering[J]. Nuclear Instruments and Methods in Physics Research B, 2012, 273(15): 109-112.
[32] SUDA Y, KAWASAKI H, UEDA T. Preparation of nitrogen doped titanium oxide thin films using a PLD method as parameters of target material and nitrogen ratio in nitrogen/oxygen gas mixture[J]. Thin Solid Films, 2005, 476: 337-341.
[33] SOCOL G, GNATYUK Y, STEFAN N, et al. Photocatalytic activity of pulsed laser deposited TiO2 thin films in N2, O2 and CH4[J]. Thin Solid Films, 2010, 518(16): 4648-4653.
[34] SARANTOPOULOS C, GLEIZES A N, MAURY F. Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates[J]. Thin Solid Films, 2009, 518: 1299-1303.
[35] DUNNILL C W, PARKIN I P. N-doped titania thin films prepared by atmospheric pressure CVD using t-butylamine as the nitrogen source: enhanced photocatalytic activity under visible light[J]. Chemical Vapor Deposition, 2009, 15(7-9) :171-174.
[36] SONI S S, HENDERSON M J, BARDEAU J F, et al. Visible-light photocatalysis in titania-based mesoporous thin films[J]. Advanced Materials, 2008, 20(8): 1493-1498.
[37] CHEKINIA M, MOHAMMADIZADEH M R, VAEZ ALLAEI S M. Photocatalytic and superhydrophilicity properties of N-doped TiO2 nanothin films[J]. Applied Surface Science, 2011, 257(16): 7179-7183.
[38] WANG Y, FENG C X, ZHANG M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen[J]. Applied Catalysis B: Environmental, 2010, 100(1-2): 84-90.
[39] LI Y H, CAO W B, RAN F Y, et al. Photocatalytic degradation of methylene blue aqueous solution under visible light irradiation by using N-doped titanium dioxide[J]. Key Engineering Materials, 2007, 336-338: 1972-1975.
[40] CHENG X W, YU X J, XING Z P. Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity[J]. Applied Surface Science, 2012, 258(7): 3244-3248.
[41] BARUWATI B, VARMA R S. Synthesis of N-doped nano TiO2 using guanidine nitrate: an excellent visible light photocatalyst[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(3): 2036-2041.
[42] YU B Y, LAU W M, YANG J. Preparation and characterization of N-TiO2 photocatalyst with high crystalline and enhanced photocatalytic inactivation of bacteria[J]. Nanotechnology, 2013, 24(33): 335705.
[43] D'ARIENZO M, SCOTTI R, WAHBA L, et al. Hydrothermal N-doped TiO2: explaining photocatalytic properties by electronic and magnetic identification of N active sites[J]. Applied Catalysis B: Environmental, 2009, 93(1-2): 149-155.
[44] HUANG D G , LIAO S J , QUAN S Q, et al. responsive N-TiO2 mixed crystal by a modified hydrothermal process[J]. Journal of Non-Crystalline Solids, 2008, 354(33): 3965-3972.
[45] HU S Z, WANG A J, LI X, et al. Hydrothermal synthesis of well dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light[J]. Journal of Physics and Chemistry of Solids, 2010, 71(3):156-162.
[46] WU D Y, LONG M, CAI W M, et al. Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible light activity[J]. Journal of Alloy and Compounds, 2010, 502: 289-294.
[47] XU J N, LIU Q, LIN S F, et al. One-step synthesis of nanocrystalline N-doped TiO2 powders and their photocatalytic activity under visible light irradiation[J]. Research on Chemical Intermediates, 2013, 39(4):1655-1664.
[48] XU J N, WANG F, LIU W X, et al. Nanocrystalline N-doped TiO2 powders: mild hydrothermal synthesis and photocatalytic degradation of phenol under visible light irradiation[J]. International Journal of Photoenergy, 2013, Article ID 616139, 7 pages.
[49] LIU W X, LIU Q , LI X F, et al. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe, N) co-doped TiO2 powders[J]. Science China Technological Sciences, 2010, 53:1477-1482.
[50] KHAN M, XU J N, CHEN N, et al. First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2[J]. Journal of Alloys and Compounds, 2012, 513:539-545.
[51] KHAN M, CAO W B, CHEN N, et al. Ab-initio calculations of synergistic chromium nitrogen codoping effects on the electronic and optical properties of anatase TiO2[J]. Vacuum, 2013, 92:32-38.