Progress in Research on Preparation and Application of Graphene Composites
Wen-bin YANG1,2,*(), Li ZHANG1,2, Jing-wei LIU1,2, Huan-rui LIU1,2, Bing-hua TANG3
1 State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 2 Engineering Research Center of Biomass Materials (Ministry of Education), Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
Graphene is a single atomic layer structure, which is the thinnest 2-D planar sheet composed of sp2-bonded carbon atoms. The special structure of graphene has excellent properties, such as photoelectric property, heat stability and mechanical properties. There has been increasing attention to preparation, property and application of graphene composites in recent years. In the paper, preparation methods of graphene composites is reviewed, such as graphene/polymer composites, graphene/metal (metal oxide) composites, and ternary composites of graphene. The advances in application of graphene composites are also reviewed, such as in lithium battery, supercapacitors, photovoltaic devices, sensor applications. Furthermore, the important research direction of graphene composites is pointed out.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296): 666- 669.
2
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438 (7065): 197- 200.
3
GEIM A K, NOVOSELOV K S The rise of graphene[J]. Nature Materials, 2007, 6 (3): 183- 191.
4
BALANDIN A A, GHOSH S, BAO W, et al Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
5
CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523- 527.
6
LEE C G, WEI X D, KYSAR J W, et al Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385- 388.
7
KIM H, MIURA Y, MACOSKO C W Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chem Mater, 2010, 22 (11): 3441- 3450.
8
WAKABAYASHI K, PIERRE C, DIKIN D A, et al Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromolecules, 2008, 41 (6): 1905- 1908.
9
YANG Y, WANG J, ZHANG J, et al Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles[J]. Langmuir, 2009, 25 (19): 11808- 11814.
10
KIM H, MACOSKO C W Processing-property relationships of polycarbonate/graphene composites[J]. Polymer, 2009, 50 (15): 3797- 3809.
11
LIANG J, HUANG Y, ZHANG L, et al Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Adv Fun Mater, 2009, 19 (14): 2297- 2302.
12
ZHAO X, ZHANG Q, CHEN D, et al Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43 (5): 2357- 2363.
13
WU Q, XU Y, YAO Z, et al Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano, 2010, 4 (4): 1963- 1970.
14
WANG H, HAO Q, YANG X, et al Effect of graphene oxide on the properties of its composite with polyaniline[J]. ACS Appl Mate Inter, 2010, 2 (3): 821- 828.
15
GLOVER A J, CAI M, OVERDEEP K R, et al In situ reduction of graphene oxide in polymers[J]. Macromolecules, 2011, 44 (24): 9821- 9829.
16
TANG Y, WU N, LUO S, et al One-step electrodeposition to layer-by-layer graphene-conducting-polymer hybrid films[J]. Macromol Rapid Comm, 2012, 33 (20): 1780- 1786.
17
STANKOVICH S, DIKIN D A, DOMMETT G H B, et al Graphene-based composite materials[J]. Nature, 2006, 442 (7100): 282- 286.
18
BAE S, KIM H, LEE Y, et al Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechol, 2010, 5 (8): 574- 578.
19
CHEN Z, REN W, GAO L, et al Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater, 2011, 10 (6): 424- 428.
YAN Shao-jiu, YANG Cheng, HONG Qi-hu, et al Research of graphene-reinforced aluminum matrix nanocomposites[J]. Journal of Materials Engineering, 2014, (4): 1- 6.
21
BAI S, SHEN X, ZHONG X, et al One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal[J]. Carbon, 2012, 50 (6): 2337- 2346.
22
TIAN J, LIU S, ZHANG Y, et al Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation[J]. Inorg Chem, 2012, 51 (8): 4742- 4746.
23
LIANG J, WEI W, ZHONG D, et al One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries[J]. ACS Appl Mater Inter, 2011, 4 (1): 454- 459.
24
DONG X, XU H, WANG X, et al 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6 (4): 3206- 3213.
25
WU J, SHEN X, JIANG L, et al Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites[J]. Appl Surf Sci, 2010, 256 (9): 2826- 2830.
26
SHEN J F, YAN B, SHI M, et al One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J]. J Mater Chem, 2011, 21 (10): 3415- 3421.
27
WANG H W, HU Z A, CHANG Y Q, et al Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics[J]. Electrochim Acta, 2010, 55 (28): 8974- 8980.
28
ZHU J X, ZHU T, ZHOU X Z, et al Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability[J]. Nanoscale, 2011, 3 (3): 1084- 1089.
29
DAI Y, CAI S, YANG W, et al Fabrication of self-binding noble metal/flexible graphene composite paper[J]. Carbon, 2012, 50 (12): 4648- 4654.
30
ADHIKARI B, BISWAS A, BANERJEE A Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles[J]. Langmuir, 2011, 28 (2): 1460- 1469.
31
TIEN H, HUANG Y, YANG S, et al The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films[J]. Carbon, 2011, 49 (5): 1550- 1560.
32
ZHOU X, HUANG X, QI X, et al In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces[J]. J Phys Chem C, 2009, 113 (25): 10842- 10846.
33
ZHANG Z, XU F, YANG W, et al A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J]. Chem Commun, 2011, 47 (22): 6440- 6442.
34
ZHANG M, QU B, LEI D, et al A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties[J]. J Mater Chem, 2012, 22 (9): 3868- 3874.
35
VADAHANAMBI S, JUNG J, OH I Microwave syntheses of graphene and graphene decorated with metal nanoparticles[J]. Carbon, 2011, 49 (13): 4449- 4457.
36
LIN Y, BAGGETT D W, KIM J, et al Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating[J]. ACS Appl Mater Interf, 2011, 3 (5): 1652- 1664.
37
HASSAN H M A, ABDELSAYED V, KHDER A E R S, et al Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media[J]. J Mater Chem, 2009, 19 (23): 3832- 3837.
38
GUARDIA L, VILLAR-RODIL S, PAREDES J I, et al UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation[J]. Carbon, 2012, 50 (3): 1014- 1024.
39
AKHAVAN O Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol[J]. Carbon, 2011, 49 (1): 11- 18.
40
WILLIAMS G, SEGER B, KAMAT P V TiO2-graphene nanocomposites[J]. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2 (7): 1487- 1491.
41
KARIM M R, SHINODA H, NAKAI M, et al Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid[J]. Adv Fun Mater, 2013, 23 (3): 323- 332.
42
LIU X, MAO J, LIU P, et al Fabrication of metal-graphene hybrid materials by electroless deposition[J]. Carbon, 2011, 49 (2): 477- 483.
43
CAO X, SHI Y, SHI W, et al Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7 (22): 3163- 3168.
44
MANDAL S, SAHA S K Ni/graphene/Ni nanostructures for spintronic applications[J]. Nanoscale, 2012, 4 (3): 986- 990.
45
TUNG T T, FELLER J, KIM T, et al Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer[J]. J Polym Sci Pol Chem, 2012, 50 (5): 927- 935.
46
KASSAEE M Z, MOTAMEDI E, MAJDI M Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite[J]. Chem Eng J, 2011, 172 (1): 540- 549.
47
WANG X, SONG L, YANG H, et al Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters[J]. J Mater Chem, 2012, 22 (8): 3426- 3431.
48
BIRROZZIA A, RACCICHINIB R, NOBILIA F, et al High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries[J]. Electrochimica Acta, 2014, 137 (10): 228- 234.
49
WANG H L, CUI L F, YANG Y A, et al Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J Am Chem Soc, 2010, 132 (40): 13978- 13980.
50
CHEN J S, WANG Z Y, DONG X C, et al Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities[J]. Nanoscale, 2011, 3 (5): 2158- 2161.
DING Xiang, HUANG Zheng-hong, SHEN Wan-ci, et al Preparation and electrochemical performance of a CuO/graphene composite[J]. New Carbon Materials, 2013, 28 (3): 172- 177.
52
CHEN S, ZHU J, WU X, et al Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4 (5): 2822- 2830.
QU Jiang-ying, LI Yu-jia, LI Chuan-peng, et al Synthesis of reduced graphene oxide/Mn3O4 nanocomposites for supercapacitors[J]. New Carbon Materials, 2014, 29 (3): 186- 192.
54
CHEN S, ZHANG L L, ZHAO X S, et al Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chem Mater, 2010, 22 (4): 1392- 1401.
55
LIU J, WANG Z, XIE X, et al A rationally-designed synergetic polypyrrole/graphene bilayer actuator[J]. J Mater Chem, 2012, 22 (9): 4015- 4020.
56
ZHAO Y, LIU J, HU Y, et al Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Adv Mater, 2013, 25 (4): 591- 595.
57
WANG X, ZHI L J, MULLEN K, et al Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letter, 2008, 8 (1): 323- 327.
58
BECERRIL H A, MAO J, LIU Z F, et al Evaluation of solution-processed reduced graphene oxide films as transparent con-ductors[J]. ACS Nano, 2008, 2 (3): 463- 470.
59
LI X L, ZHANG G Y, BAI X D, et al Highly conducting graphene sheets and langmuir-blodgett films[J]. Nat Nanotechnol, 2008, 3 (9): 538- 542.
60
ALWARAPPAN S, ERDEM A, LI C Z, et al Probing the electrochemical properties of graphene nanosheets for biosensing applications[J]. J Phys Chem C, 2009, 113 (20): 8853- 8857.
61
WANG Y, YANG R, SHI Z, et al Super-elastic graphene ripples for flexible strain sensors[J]. ACS Nano, 2011, 5 (5): 3645- 3650.
62
HONG W, BAI H, XU Y, et al Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors[J]. J Phys Chem C, 2010, 114 (4): 1822- 1826.
63
ROBINSON J T, PERKINS F K, SNOW E S, et al Reduced graphene oxide molecular sensors[J]. Nano Letter, 2008, 8 (10): 3137- 3140.
64
SCHEDIN F, GEIM A K, MOROZOV S V, et al Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater, 2007, 6 (9): 652- 655.
65
DAN Y, LU Y, KYBERT N J, et al Intrinsic response of graphene vapor sensors[J]. Nano Letters, 2009, 9 (4): 1472- 1475.
66
KIM Y, NA H, MIN D Influence of surface functionalization on the growth of gold nanostructures on graphene thin films[J]. Langmuir, 2010, 26 (16): 13065- 13070.
67
LIU H R, YANG W B, HE F F, et al Graphene-based composite with microwave absorption property prepared by in situ reduction[J]. Polym Compos, 2014, 35 (3): 461- 467.