Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (4): 13-18    DOI: 10.11868/j.issn.1001-4381.2015.04.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
新型Al-Zn-Mg-Cu铝合金热稳定性研究
刘铭1,2, 汝继刚1, 臧金鑫1,2, 张坤1, 何维维1,2, 王亮1, 陈高红1,2
1. 北京航空材料研究院, 北京 100095;
2. 北京市先进 铝合金材料及应用工程技术研究中心, 北京 100095
Thermal Stability of New Style Al-Zn-Mg-Cu Aluminum Alloy
LIU Ming1,2, RU Ji-gang1, ZANG Jin-xin1,2, ZHANG Kun1, HE Wei-wei1,2, WANG Liang1, CHEN Gao-hong1,2
1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
全文: PDF(2333 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用常温拉伸力学性能测试和透射电镜(TEM)观察,研究新型Al-Zn-Mg-Cu铝合金7D04的热稳定性。结果表明:7D04-T7451合金的组织和性能在不高于125℃时可长时间保持稳定;当温度高于150℃时,板材的强度随着稳定化处理时间的延长持续下降;稳定化处理温度越高强度下降的幅度越大。稳定化温度175℃处理500h后,屈服强度和抗拉强度仅为286MPa和385MPa,与未稳定化处理相比分别降低38%和26%。7D04-T7451铝合金在稳定化处理过程中强度下降的内在原因是由于η'和η相的粗化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘铭
汝继刚
臧金鑫
张坤
何维维
王亮
陈高红
关键词 7D04铝合金热稳定性微观组织力学性能    
Abstract:Thermal stability of new style Al-Zn-Mg-Cu aluminum alloy 7D04 was investigated by room temperature mechanical tensile test and TEM analysis. The results show that the microstructures and mechanical properties of 7D04-T7451 keep stable for a long time at 125℃ or below. When the thermal exposure temperature is higher than 150℃, the strength decreases with the increasing of thermal exposure time. The higher thermal exposure temperature, the larger strength drops. When the alloy is exposed at 175℃ for 500h, the yield strength and the tensile strength are 286MPa and 385MPa, drop 38% and 26% respectively. The main mechanism of the strength of 7D04-T7451 aluminum alloy decrease during thermal exposure processing is the coarsening of η' phase and η phase.
Key words7D04 aluminum alloy    thermal stability    microstructure    mechanical property
收稿日期: 2013-11-28     
1:  TG146.2  
通讯作者: 刘铭(1982-),女,博士,工程师,研究方向:先进航空铝合金及其工艺,联系地址:北京市81信箱2分箱(100095),mingliu5753@163.com     E-mail: mingliu5753@163.com
引用本文:   
刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
LIU Ming, RU Ji-gang, ZANG Jin-xin, ZHANG Kun, HE Wei-wei, WANG Liang, CHEN Gao-hong. Thermal Stability of New Style Al-Zn-Mg-Cu Aluminum Alloy. Journal of Materials Engineering, 2015, 43(4): 13-18.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.04.003      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I4/13
[1] ZAKHAROW V V, ROSTOVA T D. High-resource aluminum alloys[J].Metal Science and Heat Treatment,1995,37(5-6):203.
[2] 刘晓涛,崔建忠.A1-Zn-Mg-Cu系超高强铝合金的研究进展[J].材料导报,2005,19(3):47-50.LIU Xiao-tao, CUI Jian-zhong. Progress in research on ultra high strength A1-Zn-Mg-Cu alloy[J].Materials Review,2005,19(3):47-50.
[3] 杨守杰,杨霞.高强度铝合金的研究进展[J].粉末冶金工业,2010,20(5):47-52.YANG Shou-jie, YANG Xia. Progress in high-strength aluminum alloy research[J]. Power Metallurgy Industry,2010,20(5):47-52.
[4] 刘延斌,刘志义,李云涛,等.时效对2524铝合金热稳定性的影响[J].材料研究学报,2007,21(6):585-588.LIU Yan-bin, LIU Zhi-yi, LI Yun-tao, et al. Effect of aging process on thermal stability of 2524 aluminum alloy[J]. Chinese Journal of Materials Research,2007,21(6):585-588.
[5] 杨守杰,黄敏,朱娜,等.2D70铝合金热稳定性研究[J].航空材料学报,2003,23(Suppl):73-77.YANG Shou-jie, HUANG Min, ZHU Na, et al. Study on the thermal stability of 2D70 alloy [J].Journal of Aeronautical Materials,2003,23(Suppl):73-77.
[6] 刘晓艳,潘清林,陆智伦,等. Al-Cu-Mg-Ag耐热铝合金的热稳定性[J].中国有色金属学报,2011,21(6):1245-1251.LIU Xiao-yan, PAN Qing-lin, LU Zhi-lun, et al. Thermal stability of Al-Cu-Mg-Ag heat-resistant alloy[J]. The Chinese Journal of Nonferrous Metals,2011,21(6):1245-1251.
[7] 魏修宇,郑子樵,李世晨,等.2197铝锂合金的耐热性能[J].中国有色金属学报,2007,17(9):1417-1422.WEI Xiu-yu, ZHENG Zi-qiao, LI Shi-chen, et al. Heat resistant properties of 2197 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals,2007,17(9):1417-1422.
[8] 彭小芒,尹志民,陈军,等.热暴露对7475-T7351铝合金组织与性能的影响[J].中国有色金属学报,2008,18(10):1781-1787.PENG Xiao-mang, YIN Zhi-min, CHEN Jun, et al. Influences of thermal exposure on properties and microstructures of 7475-T7351 aluminum alloy[J].The Chinese Journal of Nonferrous Metals,2008,18(10):1781-1787.
[9] DENG Yun-lai, WAN Li, ZHANG Yong, et al. Evolution of microstructures and textures of 7050 Al alloy hot-rolled plate during staged solution heat-treatments[J]. Journal of Alloys and Compounds,2010,498(1):88.
[10] 王东,马宗义.轧制工艺对7050铝合金显微组织和力学性能的影响[J].金属学报,2008,44(1):49-54. WANG Dong, MA Zong-yi. Effect of rolling process on microstructure and mechanical property of 7050 aluminum alloy[J].Acta Metallurgica Sinica,2008,44(1):49-54.
[11] 王正安,汪明朴,杨文超,等.1973高强高韧铝合金的时效析出及硬化行为[J].中国有色金属学报,2011,21(3):522-528. WANG Zheng-an, WANG Ming-pu, YANG Wen-chao, et al. Ageing precipitation and hardening behavior of 1973 high strength and high toughness aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2011,21(3):522-528.
[12] LI X Z, HANSEN V. HREM study and structure modeling of the η' phase, the hardening precipitates in commercial Al-Zn-Mg alloys[J]. Acta Mater,1999,47(9):2651-2659.
[13] 樊喜刚.Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究.哈尔滨:哈尔滨工业大学,2007. FAN Xi-gang. Microstructure and properties as well as fracture behavior of Al-Zn-Mg-Cu-Zr alloy[D].Harbin:Harbin Institute of Technology,2007.
[14] 李海,郑子樵,王芝秀,等.7055铝合金二次时效特征研究——(Ⅱ)显微组织与断口形貌特征[J].稀有金属材料与工程,2005,34(8):1230-1234. LI Hai, ZHENG Zi-qiao, WANG Zhi-xiu,et al. Investigation of secondary ageing characteristics of 7055 aluminum alloy-(Ⅱ) microstructures and fractography[J]. Rare Metal Materials and Engineering,2005,34(8):1230-1234.
[15] PENG Guo-sheng, CHEN Kang-hua, CHEN Song-yi, et al. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion[J]. Transactions of Nonferrous Metals Society of China,2012,22(4):803.
[16] 贾乐,陈康华,陈送义,等.7085铝合金的高温压缩流变应力及软化行为[J].粉末冶金材料科学与工程,2012,17(4):423-429. JIA Le, CHEN Kang-hua, CHEN Song-yi, et al. Flow stress and softening behavior of 7085 aluminum alloy during compression deformation at elevated temperature[J]. Materials Science and Engineering of Powder Metallurgy,2012,17(4):423-429.
[17] NICOLAS M, DESCHAMPS A. Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments[J]. Acta Materialia,2003,51(20):6077-6094.
[18] MARSH S P, GLICKMAN M E. Kinetics of phase coarsening in dense system[J]. Acta Mater,1996,44(9):3761-3771.
[1] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[2] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[3] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[4] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[5] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[6] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[7] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[8] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[9] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
[10] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[11] 王洁, 聂宝华, 蔡成, 张峥. 加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J]. 材料工程, 2015, 43(1): 82-88.
[12] 杜红燕, 李亚江. AZ31/7005异种材料填丝GTAW焊接接头的组织与性能[J]. 材料工程, 2014, 0(9): 14-19.
[13] 娄长胜, 芦馨, 金光, 高景龙, 张罡. 强流脉冲电子束表面处理对TiAlN涂层刀具的组织结构及性能的影响[J]. 材料工程, 2014, 0(8): 15-20.
[14] 王定刚, 肖程波, 宋尽霞, 李青, 余乾. 不同稀土元素添加量对K465合金微观组织与力学性能的影响[J]. 材料工程, 2014, 0(8): 46-50.
[15] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面设计对Sip/Al复合材料组织和性能的影响[J]. 材料工程, 2014, 0(8): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn