Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (4): 47-52    DOI: 10.11868/j.issn.1001-4381.2015.04.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
自动铺丝过程中预浸料的侧向弯曲
方宜武, 王显峰, 顾善群, 肖军
南京航空航天大学 材料科学与技术学院, 南京 210016
Lateral Bending of Prepreg During Automated Fiber Placement
FANG Yi-wu, WANG Xian-feng, GU Shan-qun, XIAO Jun
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(1598 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 根据自动铺丝过程中预浸料的受力特点,建立预浸料的侧向弯曲变形模型。利用最小势能原理、瑞利-利兹法以及相关的复合材料力学理论,推导出预浸料侧向屈曲半径公式。研究自动铺丝温度、压力、速度、黏附力等主要工艺参数对侧向弯曲性能的影响,并用自动铺丝机铺放不同半径的预浸料圆弧进行验证。结果表明:随着温度增大、压力和速度减小,预浸料的侧向弯曲性能提高;增加预浸料黏附力可显著提高其侧向弯曲性能,符合理论分析结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方宜武
王显峰
顾善群
肖军
关键词 自动铺丝预浸料侧向弯曲屈曲半径工艺参数    
Abstract:The lateral bending model of prepreg was established, based on the mechanical characteristics during automated fiber placement(AFP). The buckling radius was deduced by using the principle of minimum potential energy, Rayleigh-Ritz method and the relevant composite material mechanics. Influence of main process parameters, such as layup temperature, layup pressure, layup speed, prepreg tack, etc, on lateral bending capability was analyzed. The lateral bending experiments indicate its effectiveness,using the AFP lay down prepreg arcs with different radii. The results show that the lateral bending performance of prepreg increases with the increasing of temperature, pressure, and decreasing of speed. And the increasing of prepreg tack can significantly improve the lateral bending performance, which all agree with theoretical prediction well.
Key wordsautomated fiber placement    prepreg    lateral bending    buckling radius    process parameter
收稿日期: 2014-03-11     
1:  TB332  
通讯作者: 王显峰(1980-),男,博士,副教授,主要研究方向为自动铺丝轨迹规划及其工艺,联系地址:江苏省南京市御道街29号,南京航空航天大学材料科学与技术学院(210016),wangxf@nuaa.edu.cn     E-mail: wangxf@nuaa.edu.cn
引用本文:   
方宜武, 王显峰, 顾善群, 肖军. 自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程, 2015, 43(4): 47-52.
FANG Yi-wu, WANG Xian-feng, GU Shan-qun, XIAO Jun. Lateral Bending of Prepreg During Automated Fiber Placement. Journal of Materials Engineering, 2015, 43(4): 47-52.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.04.009      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I4/47
[1] 李俊斐. 基于结构设计的开孔曲面自调节铺丝轨迹规划算法研究[D]. 南京:南京航空航天大学,2013.LI Jun-fei. Research on automated fiber placement trajectory planning method of adjustment algorithm based on structural design for surface with holes[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
[2] 古托夫斯基. 先进复合材料制造技术[M]. 李宏运,译.北京:化学工业出版社,2004.9-10.GOTOWSKI T G. Advanced Composites Manufacturing [M]. LI Hong-yun,translate.Beijing:Chemical Industry Press,2004.9-10.
[3] BEAKOU A, CANO M, LE CAM J B, et al. Modelling slit tape buckling during automated prepreg manufacturing:a local approach[J]. Composite Structures,2011,93(10):2628-2635.
[4] MARIATTI M, NASIR M, ISMAIL H. Effect of prepreg geometry on the prepreg and plain weave composite properties[J]. Journal of Reinforced Plastics and Composites,2002,21(8):711-722.
[5] ADAMS D O H, HYER M W. Analysis of layer waviness in flat compression-loaded thermoplastic composite laminates[J]. Journal of Engineering Materials and Technology-Transactions of the ASME,1996,118(1):63-70.
[6] NG S J, VIZZINI A. Mechanism of marcel formation in thick tapered composites[A]. 34th International Sampe Technical Conference.Baltimore:Baltimore Press,2002.1168-1179.
[7] ZHOU G. Preparation, structure and properties of advanced composites with long fibers and nanoparticles[D]. Columbus,Ohio State,USA:Ohio State University,2007.
[8] NAGENDRA S, KODIYALAM S, DAVIS J E, et al. Optimization of tow fiber paths for composite design[A]. Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials(SDM) Conference[C]. New York:Amer Inst of Aeronautics,1995.1031-1041.
[9] 老大中. 变分法基础[M]. 北京:国防工业出版社,2011.262-307.LAO Da-zhong. The Basis of Variational Method[M]. Beijing:National Defense Industry Press,2011.262-307.
[10] 李顺林. 复合材料力学引论[M].上海:上海交通大学出版社,1986.161-166. LI Shun-lin. Introduction to Mechanics of Composite Materials[M]. Shanghai:Shanghai Jiao Tong University Press,1986.161-166.
[11] 沈观林, 胡更开. 复合材料力学[M]. 北京:清华大学出版社,2006.140-155. SHEN Guan-lin, HU Geng-kai. Mechanics of Composite Materials[M]. Beijing:Tsinghua University Press,2006.140-155.
[12] 赵美英, 陶梅贞.复合材料结构力学与结构设计[M]. 西安:西北工业大学出版社,2007.56-58. ZHAO Mei-ying, TAO Mei-zhen. Mechanical and Structural Design of Composite Materials[M]. Xi'an:Northwestern Polytechnical University Press,2007.56-58.
[13] DUBOIS O, LE CAM J B, BÉAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics,2010,50(5):599-606.
[14] 陆楠楠, 肖军, 文立伟, 等. 面向自动铺放的预浸料动态黏性实验研究[J]. 航空学报,2014,35(1):279-286. LU Nan-nan, XIAO Jun, WEN Li-wei, et al. Research on the experiment of prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):279-286.
[15] KHAN M A, MITSCHANG P, SCHLEDJEWSKI R. Identification of some optimal parameters to achieve higher laminate quality through tape placement process[J]. Advances in Polymer Technology,2010,29(2):98-111.
[16] 朱黎黎, 张佐光, 李敏, 等. 工艺温度下树脂与纤维的接触角及其粘附作用研究[J]. 复合材料学报,2010,27(5):41-46. ZHU Li-li, ZHANG Zuo-guang, LI Min, et al. Contact angle and action of adhesion between epoxy resin and fibers at processing temperatures[J]. Acta Materiae Compositae Sinica,2010,27(5):41-46.
[17] 黄志军. 自动铺放成型温度与预浸带变形研究[D]. 南京:南京航空航天大学,2012. HUANG Zhi-jun. Research on Prepreg Temperature and Its Deformation for Automated Tape Laying[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012.
[18] 张鹏, 孙荣磊, 连海涛, 等. 自动铺带铺层贴合形成机制[J]. 复合材料学报,2014,31(1):40-48. ZHANG Peng, SUN Rong-lei, LIAN Hai-tao, et al. Bonding mechanism of ply during automated tape laying process[J]. Acta Materiae Compositae Sinica,2014,31(1):40-48.
[1] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[2] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[3] 李文亚, 黄春杰, 余敏, 廖汉林. 冷喷涂制备复合材料涂层研究现状[J]. 材料工程, 2013, 0(8): 1-10.
[4] 李运刚, 田薇, 方秀君. 制备工艺参数对Cu表面Cu/Si梯度层断面显微组织的影响[J]. 材料工程, 2013, (2): 65-68,98.
[5] 王炯, 李敏, 顾轶卓, 王绍凯, 张佐光. 炭纤维复合材料共固化液体成型工艺及层间性能研究[J]. 材料工程, 2013, (2): 93-98.
[6] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
[7] 栗卓新, 祝弘滨, 李辉, 孙日超. 热喷涂金属陶瓷复合涂层研究进展[J]. 材料工程, 2012, 0(5): 93-98.
[8] 郭明恩, 孙祖莉, 边文凤, 宋小然, 栾桂卿. 真空导入工艺参数对复合材料孔隙含量的影响[J]. 材料工程, 2012, 0(10): 54-57,62.
[9] 赵新宝, 刘林, 杨初斌, 张军, 李玉龙, 傅恒志. 镍基单晶高温合金凝固缺陷研究进展[J]. 材料工程, 2012, 0(1): 93-98.
[10] 王宏宇, 左敦稳, 马浩, 王明娣, 陆英艳. 工艺参数对压片预置式激光熔覆涂层微观质量的影响[J]. 材料工程, 2009, 0(9): 80-83,88.
[11] 赵海生, 潘晖, 孙计生, 李大斌. K640合金钎焊接头组织及工艺控制[J]. 材料工程, 2008, 0(9): 17-19,24.
[12] 陈玉华, 柯黎明, 徐世龙, 邢丽. 超薄不锈钢片的微激光焊接工艺研究[J]. 材料工程, 2008, 0(11): 28-31.
[13] 毕晓勤. 工艺参数对Ni-SiC复合镀层组织和性能的影响[J]. 材料工程, 2007, 0(5): 39-42.
[14] 张宝艳, 陈祥宝, 周正刚. 消泡剂对真空压力成型复合材料质量与性能的影响[J]. 材料工程, 2007, 0(12): 3-7.
[15] 李平, 王汉功, 乔生儒. 工艺参数对超音速电弧喷涂钛-铝涂层表面粗糙度的影响[J]. 材料工程, 2006, 0(8): 12-14,19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn