Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (4): 85-91    DOI: 10.11868/j.issn.1001-4381.2015.04.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
P92钢高温拉伸断口形貌的研究
赵勇桃1,2, 董俊慧1, 张韶慧2, 刘宗昌2, 李文学2
1. 内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051;
2. 内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010
High-temperature Tensile Fracture Morphology of P92 Steel
ZHAO Yong-tao1,2, DONG Jun-hui1, ZHANG Shao-hui2, LIU Zong-chang2, LI Wen-xue2
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
全文: PDF(5646 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用热模拟法进行600~1300℃温度区间P92钢的高温拉伸实验。利用SEM,LSCM对不同拉伸温度下的断口形貌及近断口组织进行分析,并对P92钢的力学性能进行研究。结果表明:P92钢拉伸时,抗拉强度由467.32MPa下降到24.32MPa,屈服强度由56.88MPa下降到1.07MPa;不同拉伸温度下,断口表现以韧性断裂为主,韧性与脆性特征共存的现象。在600~900℃时,P92钢发生了动态回复过程,断口形貌表现为韧窝特征。冷却至室温,P92钢近断口处组织均为马氏体+残余奥氏体组织+M7C3+MC+M23C6+M6C+M3C型碳化物。随着温度升高,P92钢发生了动态再结晶,断口形貌以塑孔为主。P92钢近断口处组织为马氏体+残余奥氏体组织+MC+M6C型碳化物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵勇桃
董俊慧
张韶慧
刘宗昌
李文学
关键词 P92钢断口形貌高温拉伸    
Abstract:High temperature tensile tests of P92 steel were carried out at 600-1300℃ by means of thermal simulation method. The fracture morphology and microstructure near fracture at different tensile temperatures were analyzed by SEM and LSCM, and the mechanical properties of P92 steel were investigated. The results indicate that tensile strength decreases from 467.32MPa to 24.32MPa, and yield strength decreases from 56.88MPa to 1.07MPa. The rupture is mainly ductile rupture with ductile and brittle characteristics co-existing. Dynamic recovery occurs with P92 steel at 600-900℃, and the fracture is mainly dimple.The microstructure near fracture of P92 steel is martensite+residual austenite+M7C3+MC +M23C6+M6C+M3C after cooling down to the room temperature. With the increasing of the temperature, dynamic recrystallization occurs with P92 steel, and the fracture is mainly plastic hole. The microstructure is martensite+residual austenite+MC+M6C carbides.
Key wordsP92 steel    fracture morphology    high temperature tensile
收稿日期: 2014-09-27     
1:  TG142.1  
基金资助:内蒙古自治区高等院校科学研究资助项目(NJZY13137)
通讯作者: 赵勇桃(1974-),女,博士,副教授,主要从事金属材料的质量控制及热加工工艺的研究工作,联系地址:内蒙古包头市内蒙古科技大学材料与冶金学院(014010),zyt0011@126.com     E-mail: zyt0011@126.com
引用本文:   
赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
ZHAO Yong-tao, DONG Jun-hui, ZHANG Shao-hui, LIU Zong-chang, LI Wen-xue. High-temperature Tensile Fracture Morphology of P92 Steel. Journal of Materials Engineering, 2015, 43(4): 85-91.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.04.015      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I4/85
[1] HOLLNER S, FOUMIER B, PEND J L, et al. High-temperature mechanical properties improvement on modified 9Cr-Mo martensitic steel through thermo-mechanical treatments[J]. Journal of Nuclear Materials,2010,405(2):101-108.
[2] SHI Ru-xing, LIU Zheng-dong. Hot deformation behavior of P92 steel used for ultra-super-critical power plants[J]. Journal of Iron and Steel Research,2011,18(7):53-58.
[3] 刘树敏, 鲁慧. 410S不锈钢高温拉伸形变组织研究[J]. 价值工程, 2012,(7):41-42.LIU Shu-min, LU Hui. High-temperature tensile deformation organization of 410S stainless steel[J]. Value Engineering,2012,(7):41-42.
[4] CHEN J, YOUNG B. Stress-strain curves for stainless steel at elevated temperatures[J]. Engineering Structures,2006,28(2):229-239.
[5] VýROSTKOVÁ A, HOMOLOVÁ V, PECHA J, et al. Phase evolution in P92 and E911 weld metal during ages[J]. Materials Science and Engineering:A,2008,480(1):289-298.
[6] 石如星, 刘正东. P92钢中Laves相强化作用的研究[J]. 物理测试,2011,29(4):1-4.SHI Ru-xing, LIU Zheng-dong. Study on strengthening behavior of Laves phase in P92 heat-resistant steel[J]. Physics Examination and Testing,2011,29(4):1-4.
[7] 赵强, 彭先宽, 丛相州,等. P92钢的蠕变行为研究[J]. 钢铁, 2010,45(9):82-85.ZHAO Qiang, PENG Xian-kuan, CONG Xiang-zhou, et al. Study of creep behavior of P92 steel[J]. Iron and Steel,2010,45(9):82-85.
[8] 乔亚霞,武英利,郭军. P92钢焊接接头持久强度及微观组织分析[J]. 焊接学报,2011,(1):109-112.QIAO Ya-xia, WU Ying-li, GUO Jun. Stress-rupture and microstructure analysis of P92 weld[J]. Transactions of the China Welding Institution,2011,(1):109-112.
[9] GUO Xiao-feng, Gong Jian-ming, JIANG Yong, et al. The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature[J]. Materials Science & Engineering:A,2013,564:199-205.
[10] 窦洪, 王志武, 宋涛. 超超临界压力锅炉用T92/P92钢析出相的研究进展[J]. 广东电力,2012,25(2):1-4. DOU Hong, WANG Zhi-wu, SONG Tao. Research progress of precipitated phase of T92/P92 steel for ultra supercritical pressure boilers[J]. Guangdong Electrical Power,2012,25(2):1-4.
[11] SAAD A A, HYDE T H, SUN W, et al. Characterization of viscoplasticity behaviour of P91 and P92 power plant steels[J]. International Journal of Pressure Vessels and Piping,2013,111-112:246-252.
[12] ZHAO Lei, JING Hong-yang, XU Lian-yong, et al. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint[J]. Materials and Design,2012,34:566-575.
[13] WANG Xue, PAN Qian-gang, REN Yao-yao, et al. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment[J]. Materials Science and Engineering:A,2012,552:493-501.
[14] YIN Kai-ju, QIU Shao-yu, TANG Rui, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water[J]. Journal of Supercritical Fluids,2009,50(3):235-239.
[15] ZHANG Nai-qiang, XU Hong, LI Bao-rang, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water[J]. Corrosion Science,2012,56:123-128.
[16] 胡文军, 潘晓霞, 陈勇梅,等. 温度对V-5Cr-5Ti合金拉伸性能及组织结构的影响[J]. 材料科学与工程学报,2011,29(4):564-568. HU Wen-jun, PAN Xiao-xia, CHEN Yong-mei, et al. Influences of temperature on the tensile properties and microstructure of V-5Cr-5Ti alloy[J]. Journal of Materials Science & Engineering,2011,29(4):564-568.
[17] 朱立光, 路文刚. GCr15轴承钢高温力学性能的研究[J]. 特殊钢,2007,28(4):7-9. ZHU Li-guang, LU Wen-gang. A study on high temperature mechanical properties of GCr15 bearing steel[J]. Special Steel,2007,28(4):7-9.
[18] HASHIMOTO N, BYUN T S. 中子辐照后316不锈钢的形变诱发马氏体相变和位错沟槽[J].国外核动力,2008,(6):44-48. HASHIMOTO N, BYUN T S. Seed irradiated 316 stainless steel deformation induced martensite transformation and dislocation trench[J]. Foreign Nuclear Power,2008,(6):44-48.
[1] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[2] 孔德军, 龙丹, 吴永忠, 叶存冬. X80管线钢埋弧焊接头冲击韧性及其断口形貌分析[J]. 材料工程, 2013, 0(6): 50-54.
[3] 严李李, 房现石, 梁永锋, 叶丰, 林均品. Fe-6.5%Si合金冷轧薄板的冲压性能[J]. 材料工程, 2012, 0(6): 28-31.
[4] 贺飞, 陈海峰, 王玉会. 显微组织对TA15合金高温拉伸性能的影响[J]. 材料工程, 2012, 0(2): 13-15.
[5] 汪洪峰, 左敦稳, 黄铭敏, 陈明和. 5050铝合金板材高温流变行为研究[J]. 材料工程, 2011, 0(1): 23-27.
[6] 陈邦峰, 贾泮江. ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J]. 材料工程, 2010, 0(9): 1-6,24.
[7] 龚澎, 张坤, 戴圣龙, 陆政. 均匀化处理对新型Al-Zn-Mg-Cu铝合金组织及锻造性能的影响[J]. 材料工程, 2010, 0(2): 74-77.
[8] 纪伟, 范亚夫, 陈捷, 王军. 温度对Mg-10Gd-2Y-0.5Zr合金动态拉伸行为及断裂机理的影响[J]. 材料工程, 2009, 0(10): 41-44.
[9] 贾泮江, 唐辉, 陈邦峰. 铸造方法对ZL210A铸造铝合金力学性能和断口形貌的影响[J]. 材料工程, 2008, 0(1): 30-33.
[10] 颜悦, 王晓丽, 张官理, 胡平, 刘海鹏. 聚碳酸酯透明板材的高温力学行为实验研究[J]. 材料工程, 2005, 0(8): 7-9,14.
[11] 张华, 林三宝, 吴林, 冯吉才, 宁金星. AZ31镁合金搅拌摩擦焊接头断裂机制[J]. 材料工程, 2005, 0(1): 33-36.
[12] 毕晓勤, 李金山, 耿兴国, 胡锐, 傅恒志. 定向凝固Cu-Cr自生复合材料的拉伸性能和断口形貌特征[J]. 材料工程, 2004, 0(9): 48-51,56.
[13] 于慧臣, 谢世殊, 赵光普, 杨洪才. GH141合金的高温拉伸及持久性能[J]. 材料工程, 2003, 0(9): 3-6.
[14] 张彦华, 陈丙森. 断口形貌几何特征定量分析[J]. 材料工程, 1993, 0(6): 37-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn