Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (4): 98-101    DOI: 10.11868/j.issn.1001-4381.2015.04.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
1800℃热处理对PIP法C/SiC复合材料结构和性能的影响
马彦1, 陈朝辉2
1. 中国人民解放军总后勤部 建筑工程研究所, 西安 710032;
2. 国防科技大学 航天与材料工程学院, 长沙 410073
Effect of 1800℃ Annealing on Microstructures and Properties of C/SiC Composites Fabricated by Precursor Infiltration and Pyrolysis
MA Yan1, CHEN Zhao-hui2
1. Construction Engineering Research Institute, General Logistics Department of People's Liberation Army, Xi'an 710032, China;
2. College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073, China
全文: PDF(2542 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用扫描电镜(SEM)和透射电镜(TEM),研究氩气中1800℃热处理对先驱体浸渍-裂解(PIP)工艺制备三维编织C/SiC复合材料结构和性能的影响。结果表明:在1800℃热处理过程中,C/SiC复合材料的界面处发生了碳热还原反应和硅扩散,导致基体和纤维之间产生化学结合,纤维受到损伤;1800℃热处理后,PIP法C/SiC复合材料出现8%的失重率,力学性能急剧下降80%以上,断裂行为由韧性转变为脆性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彦
陈朝辉
关键词 C/SiC复合材料力学性能微观结构热处理    
Abstract:Using SEM and TEM, the effect of 1800℃ annealing on microstructures and properties of 3D braided C/SiC composites was investigated under Ar,fabricated by PIP process. The results show that during 1800℃ annealing, the carbothermic reductions and Si diffusing happen at the interfaces of C/SiC composites, resulting in the chemical bonding between fibers and matrix, and fibers are damaged. After 1800℃ annealing, the C/SiC composites fabricated by PIP process indicate 8% mass loss rate, the mechanical properties sharply decrease over 80%, and the fracture behavior changes from toughness fracture to brittle fracture.
Key wordsC/SiC composite    mechanical property    microstructure    annealing
收稿日期: 2012-07-13     
1:  TB332  
基金资助:国家自然科学基金重点资助项目(90916002)
通讯作者: 马彦(1982-),男,博士,工程师,主要从事高分子和陶瓷材料方面研究工作,联系地址:陕西省西安市新城区金花北路16号总后建筑工程研究所(710032),fogclock@sohu.com     E-mail: fogclock@sohu.com
引用本文:   
马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
MA Yan, CHEN Zhao-hui. Effect of 1800℃ Annealing on Microstructures and Properties of C/SiC Composites Fabricated by Precursor Infiltration and Pyrolysis. Journal of Materials Engineering, 2015, 43(4): 98-101.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.04.017      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I4/98
[1] NASLAIN R. Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[J]. Composites Science and Technology,2004,64(2):155-170.
[2] PAPENBRUG U, BEYER S, LAUBE H, et al. Advanced ceramic matrix composites(CMC'S) for space propulsion system. Virginia:American Institute of Aeronautics and Astronautics,1997.
[3] BEYER S, STROBEL F. Development and testing of C/SiC composites for liquid rocket propulsion applications[R]. Virginia:American Institute of Aeronautics and Astronautics,1999.
[4] ZIEGLER G, RICHTER I, SUTTOR D. Fiber-reinforced composites with polymer-derived matrix:processing,matrix formation and properties[J]. Composites Part A,1999,30(4):411-417.
[5] HERWOOD W J, WHITMARSH C K, JACOBS J M, et al. Low cost,near-net shape ceramic composites using resin transfer molding and pyrolysis(RTMP)[J]. Ceramic Engineering and Science Proceedings,1996,17(4):174-183.
[6] ODESHI A G, MUCHA H, WIELAGE B. Manufacture and characterization of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon,2006,44(2):1994-2001.
[7] JULIANE M, MARCUS M, MEINHARD K, et al. New porous silicon carbide composite reinforced by intact high-strength carbon fibres[J]. Journal of the European Ceramic Society,2006,26(4):1715-1722.
[8] MA Y, WANG S, CHEN Z. Effects of high-temperature annealing on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane[J]. Materials Science and Engineering:A,2011,528(7-8):3069-3072.
[9] MA Y, CHEN Z. Effects of 1600 ℃ annealing atmosphere on the microstructures and mechanical properties of C/SiC composites fabricated by precursor infiltration and pyrolysis[J]. Ceramics International,2012,38(5):4229-4235.
[10] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6.
[11] ZHOU C C, CHANG C R, HU H F, et al. Preparation of 3D-Cf/SiC composites at low temperatures[J]. Materials Science and Engineering:A,2008,488(1-2):569-572.
[12] JIAN K, CHEN Z, MA Q, et al. Effects of pyrolysis process on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane[J]. Materials Science and Engineering:A,2005,390(1):154-158.
[13] 周长城, 张长瑞, 胡海峰, 等. C/SiC 复合材料的低温制备工艺研究[J]. 材料工程,2012,(9):44-47. ZHOU C C, ZHANG C R, HU H F, et al. Preparation of C/SiC composites at low temperature[J]. Journal of Materials Engineering,2012,(9):44-47.
[14] MA Y, WANG S,CHEN Z. In situ growth of a carbon interphase between carbon fibres and a polycarbosilane-derived silicon carbide matrix[J]. Carbon,2011,49(8):2869-2872.
[15] JIANG X X, BRYDSON R, APPLEYARD S P, et al. Characterization of the fibre-matrix interfacial structure in carbon fibre-reinforced polycarbosilane-derived SiC matrix composites using STEM/EELS[J]. Journal of Microscopy,1999,196(2):203-212.
[16] LY H Q, TAYLOR R,DAY R. Conversion of polycarbosilane(PCS) to SiC-based ceramic:part II pyrolysis and characterization[J]. Journal of Materials Science,2001,36(16):4045-4057.
[17] DESPRÉS J F,MONTHIOUX M. Mechanical properties of C/SiC composites as explained from their interfacial features[J]. Journal of the European Ceramic Society,1995,15(3):209-224.
[1] 岳远杰, 唐荻, 武会宾, 梁金明, 巨彪. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14-20.
[2] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[3] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[4] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[5] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[6] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[7] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[8] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[9] 王洁, 聂宝华, 蔡成, 张峥. 加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J]. 材料工程, 2015, 43(1): 82-88.
[10] 杨杰, 邹金文, 王晓峰, 吉传波, 周晓明. 热处理对FGH96合金异常晶粒长大的影响[J]. 材料工程, 2014, 0(8): 1-7.
[11] 娄长胜, 芦馨, 金光, 高景龙, 张罡. 强流脉冲电子束表面处理对TiAlN涂层刀具的组织结构及性能的影响[J]. 材料工程, 2014, 0(8): 15-20.
[12] 王定刚, 肖程波, 宋尽霞, 李青, 余乾. 不同稀土元素添加量对K465合金微观组织与力学性能的影响[J]. 材料工程, 2014, 0(8): 46-50.
[13] 王晓博, 俞宏英, 关望, 孙冬柏. X52钢在普光气田服役条件下的CO2腐蚀行为[J]. 材料工程, 2014, 0(8): 72-78.
[14] 张丁非, 耿青梅, 杨绪盛, 余大亮, 潘复生. 新型复合挤压工艺中温度对AZ61组织和性能的影响[J]. 材料工程, 2014, 0(7): 1-4.
[15] 曹东, 张晓云, 陆峰, 刘建华. 先进复合材料T300/5405综合环境实验谱的研究[J]. 材料工程, 2014, 0(7): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn