Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (5): 8-12    DOI: 10.11868/j.issn.1001-4381.2015.05.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
工艺参数对铝合金搅拌摩擦增材制造成形的影响
王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成
南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Influence of Process Parameters on Formation of Friction Stir Additive Manufacturing on Aluminum Alloy
WANG Xin-kai, XING Li, XU Wei-ping, HUANG Chun-ping, LIU Fen-cheng
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(2155 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用4mm厚的5A03-H铝合金板材作为基材,利用无倾角成形工具,进行搅拌摩擦增材制造工艺实验,研究工艺参数对增材区成形的影响.结果表明:随着行进速度提高,单道增材宽度、界面迁移高度和迁移宽度值均减小.当行进速度为60mm/min时,界面迁移量较小,单道增材宽度较大.增材间距大时,会有两道次间的未结合界面和迁移界面缺陷;随间距减小,未结合界面逐渐转变成迁移界面;当间距达到某个值时,迁移界面消失.为了得到成形良好的增材区,必须优化增材加工的间距.逆向增材与同向增材相比,能有效地抑制并消除向增材区中心迁移的界面,因此可获得较大的有效增材宽度.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王忻凯
邢丽
徐卫平
黄春平
刘奋成
关键词 搅拌摩擦增材制造铝合金工艺参数界面迁移    
Abstract:The friction stir additive manufacturing (FSAM) process experiment was conducted by using the zero tilt angle forming tool with 4mm thickness plates of Al alloy 5A03-H. The influence of the process parameters on the formation of FSAM zone was investigated. The results show that as the traveling speed increases, the width of single pass as well as the migration height and width of interface all decrease. When the traveling speed is 60mm/min, migration of interface is small and the width of single pass is bigger. When the FSAM space is big, there are uncombined interface and migration interface defects between two adjacent passes. As the space decreases, uncombined interface gradually transforms into migration interface. When the FSAM space reaches a definite value, migration interface disappears. In order to achieve excellent FSAM zone, the FSAM space must be optimized. Compared with the same direction FSAM, the reverse direction FSAM can effectively restrain and eliminate the interface migrating to the center of FSAM zone, thus, the more effective width of FSAM zone can be obtained.
Key wordsfriction stir additive manufacturing    Al alloy    process parameter    interface migration
收稿日期: 2014-12-16      出版日期: 2015-05-20
中图分类号:  TG146.2+1  
  TG456  
基金资助:国家自然科学基金(51364037,51465044);江西省高等学校科技落地计划项目(KJLD12074,KJLD13055);航空科学基金(20140956003)
通讯作者: 邢丽(1959-),女,教授,硕士生导师,研究方向:焊接冶金、焊接力学、电弧焊工艺和搅拌摩擦焊技术,联系地址:江西省南昌市丰和南大道696号南昌航空大学航空制造工程学院(330063),xingli_59@126.com     E-mail: xingli_59@126.com
引用本文:   
王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
WANG Xin-kai, XING Li, XU Wei-ping, HUANG Chun-ping, LIU Fen-cheng. Influence of Process Parameters on Formation of Friction Stir Additive Manufacturing on Aluminum Alloy. Journal of Materials Engineering, 2015, 43(5): 8-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.05.002      或      http://jme.biam.ac.cn/CN/Y2015/V43/I5/8
[1] ATWOOD C, ENSZ M, GREECE D, et al. Laser engineered net shaping (LENS):a tool for direct fabrication of metal parts[A]. 17th International Conference on Applications of Lasers and Elector-Optics[C]. Orlando FL:Laser Institute of America, 1998. 16-19.
[2] SANTOS E C, SHIOMI M, OSAKADA K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1459-1468.
[3] GRIFFITH M L, KEICHER D M, ATWOOD C L, et al. Free form fabrication of metallic components using laser engineered net shaping[A]. Proceedings of the Solid Freeform Fabrication Symposium[C]. Austin:University of Texas, 1996. 125-132.
[4] DAVE V R, MATZ J E, EAGAR T W. Electron beam solid freeform fabrication of metal parts[A]. 6th Solid Freeform Fabrication Symposium[C]. Austin:University of Texas, 1995. 64-71.
[5] 徐卫平, 邢丽, 柯黎明. 镁合金AZ80A搅拌摩擦焊焊核区组织金属学演变[J]. 材料工程, 2007,(5):53-56.XU Wei-ping, XING Li, KE Li-ming. Microstructural evolution of nugget zone in magnesium alloy AZ80A friction stir welds[J]. Journal of Materials Engineering, 2007,(5):53-56.
[6] 杨素媛, 张保垒. 厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能[J]. 焊接学报, 2009, 30(5):1-4.YANG Su-yuan, ZHANG Bao-lei. Microstructures and mechanical properties of thick AZ31 magnesium alloy welded joint by friction stir welding[J]. Transactions of the China Welding Institution, 2009, 30(5):1-4.
[7] 陈影, 付宁宁, 沈长斌, 等. 5083铝合金搅拌摩擦焊搭接接头研究[J]. 材料工程, 2012,(6):24-27.CHEN Ying, FU Ning-ning, SHEN Chang-bin, et al. Research on the joint of friction stir lap welding for aluminum alloy 5083[J]. Journal of Materials Engineering, 2012,(6):24-27.
[8] 李继忠, 马正斌, 董春林. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程, 2014,(6):1-10.LI Ji-zhong, MA Zheng-bin, DONG Chun-lin. Material flowing behaviors of friction stir welding by dissimilar aluminum alloys[J]. Journal of Materials Engineering, 2014,(6):1-10.
[9] 王国庆,铝合金的搅拌摩擦焊接[M]. 北京:中国宇航出版社, 2010. 1-3.WANG Guo-qing. Friction Stir Welding of Aluminium Alloy[M]. Beijing:China Astronautic Publishing House, 2010. 1-3.
[10] 柯黎明, 魏鹏, 邢丽, 等. 双道焊对搅拌摩擦焊搭接界面及接头性能的影响[J]. 焊接学报, 2011, 32(7):5-8. KE Li-ming, WEI Peng, XING Li, et al. Influence of double passes weld on interface migration and mechanical property of friction stir lap joint[J]. Transactions of the China Welding Institution, 2011, 32(7):5-8.
[11] XING Li, ZOU Gui-sheng, KE Li-ming, et al. Influence of tool pin profile on the interface migration of friction stir lap joints[J]. China Welding, 2011, 20(4):6-11.
[12] SEIDEL T U, REYNOLDS A P. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique[J]. Metallurgical and Materials Transactions A, 2001, 32(11):2879-2884.
[13] CEDERQVIST L, REYNOLDS A P. Factors affecting the properties of friction stir welded aluminum lap joints[J]. Welding Journal, 2004, 83(3):281-287.
[14] 柯黎明, 潘际銮,邢丽, 等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论[J]. 机械工程学报, 2009, 45(4):89-94. KE Li-ming, PAN Ji-luan, XING Li, et al. Sucking-extruding theory for the material flow in friction stir welds[J]. Journal of Mechanical Engineering, 2009,45(4):89-94.
[15] XING Li, KE Li-ming, HUANG Chun-ping, et al. The formation mechanism of the friction stir welds[A]. Materials Science and Technology[C]. Pennsylvania:Pittsburgh, 2009. 2586-2596.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[6] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[7] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[8] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[9] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[10] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[11] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[12] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[13] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[14] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[15] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn