利用X射线衍射(XRD)、热膨胀仪、电子背散射衍射(EBSD)研究了两相区回火温度对一种Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响.结果表明:当两相区回火温度低于650℃时,实验钢的亚稳奥氏体具有较好的稳定性,其室温下的体积分数随着两相区回火温度的升高逐渐增大;当两相区回火温度高于650℃时,亚稳奥氏体的稳定性显著降低,在回火冷却过程中,部分奥氏体转变为"新鲜"马氏体,室温亚稳奥氏体体积分数随两相区回火温度升高而逐渐降低.当两相区回火温度为650℃时,钢中亚稳奥氏体具有最佳的体积分数和稳定性配合.力学测试结果表明:当两相区回火温度为650℃时,实验钢的力学性能最佳,其屈服强度为748MPa,抗拉强度为813MPa,伸长率为27.5%,-20℃和-100℃的冲击功分别为217J和117J.
采用4mm厚的5A03-H铝合金板材作为基材,利用无倾角成形工具,进行搅拌摩擦增材制造工艺实验,研究工艺参数对增材区成形的影响.结果表明:随着行进速度提高,单道增材宽度、界面迁移高度和迁移宽度值均减小.当行进速度为60mm/min时,界面迁移量较小,单道增材宽度较大.增材间距大时,会有两道次间的未结合界面和迁移界面缺陷;随间距减小,未结合界面逐渐转变成迁移界面;当间距达到某个值时,迁移界面消失.为了得到成形良好的增材区,必须优化增材加工的间距.逆向增材与同向增材相比,能有效地抑制并消除向增材区中心迁移的界面,因此可获得较大的有效增材宽度.
采用金相显微镜、扫描电镜、透射电镜、X射线衍射仪、拉伸试验机、硬度计等研究了4343/3003/4343铝合金轧制复合板在100~500℃退火15min~10h后的微观组织和力学性能.结果表明:芯层合金300℃退火1h后开始再结晶,370℃以上退火1h后已完全再结晶且伴随有弥散相析出,弥散相析出后通过钉扎晶界阻碍再结晶晶粒长大;1h退火时,随退火温度升高,芯层合金晶粒先增大后减小,复合板的拉伸强度与硬度先降低后升高;370℃退火时,随退火时间延长,芯层合金再结晶程度增加,晶粒缓慢长大,复合板的拉伸强度与硬度下降;复合板最佳退火工艺为370℃/1h.
采用自制的CuMnNiCo钎料对氧化物弥散强化(ODS)合金MGH956进行钎焊实验,分析了钎焊过程中各种组织的形成过程,研究了不同的钎焊温度对接头组织和性能的影响.结果表明:在1000~1050℃保温20min工艺下钎焊MGH956合金,均可获得良好的钎焊成形效果,钎焊接头由钎缝中心区的Cu-Mn基固溶体和两侧扩散反应区的Fe-Mn基固溶体组成,并含有三种不同的化合物相.钎焊温度为1030℃和1050℃时,接头的室温拉伸断裂发生在钎缝中心处,断口主要呈沿晶脆性断裂特征.钎焊温度的提高使沿晶界分布的脆性(Mn,Ni)-Si相减少,有利于改善钎焊接头强度,钎焊接头的室温抗拉强度最高可达到母材强度的75%.
将聚氨酯填充到蜂窝纸板的孔隙中制作了聚氨酯蜂窝纸板复合材料,进而对其进行落锤冲击实验.通过落锤实验得到聚氨酯蜂窝纸板复合材料的应力-应变曲线,对影响其动力学性能的复合材料孔径、厚度、横截面尺寸及冲击速率四个因素进行了分析.结果表明:复合材料的动态屈服强度和动态弹性极限随着蜂窝纸芯的孔径、复合材料厚度和横截面积的增大而减小,随着冲击速率的增大而提高.在实验数据的基础上拟合了复合材料的动态本构方程,并对本构方程与实验数据进行了比较,拟合效果较好.
在马氏体不锈钢中加入氮合金,并通过铌、钒、钛固氮形成氮合金化堆焊硬面合金,进行了电化学腐蚀和化学侵蚀实验,研究了硬面合金的耐腐蚀性能.结果表明:堆焊硬面合金的氮合金化,抑制了铬的碳化物的析出,有效增强了钝化膜的稳定性,使硬面合金的自腐蚀电位从-345mV提高到-264mV,增强了堆焊硬面合金抗电化学腐蚀性能;氮合金化堆焊硬面合金均匀细小的组织形态,使得在FeCl3溶液中发生点蚀的蚀坑小且分散,提高了硬面合金的耐腐蚀性能.
利用材料相图与性能模拟计算软件JMatPro,研究了难熔元素W,Mo,Nb和Fe含量的变化对一种新型镍铁基高温合金拓扑密排相(TCP)和碳化物相析出及高温性能的影响.结果表明:新型镍铁基高温合金晶内强化相为γ'相,晶界为M23C6碳化物;在合金中添加Mo,W,Nb均可提高合金的持久强度和屈服强度;增加合金中Mo,Nb,Fe的含量会提高Laves相和σ相的析出温度;为避免在长期服役过程中合金析出较多的TCP相,在合金中添加不超过0.6%(质量分数,下同)的Nb或不超过1%的Mo和W,以使TCP相的析出温度尽可能低于使役温度.
采用原位化学沉淀法将Fe3O4与石墨复合,研究了不同复合比例对吸波性能的影响.结果表明:随着Fe3O4负载量的增加,复合材料中Fe3O4的X射线衍射峰增强; Fe3O4主要沉积在石墨表面,随着Fe3O4负载量的增加,对石墨表面的包覆越完整,但也有一些Fe3O4纳米颗粒散落在石墨颗粒之间;复合材料的介电常数随Fe3O4负载量的增大而减小,磁导率变化较小;在Fe3O4与石墨不同质量比复合材料中,质量比为5:1和4:1的复合材料表现出较好的吸波效果,在厚度为1.5mm时,质量比为5:1样品吸收峰值达-31.9dB,大于-10dB的吸收频带宽为5.0GHz.
通过极限氧指数(LOI)、水平垂直燃烧(UL-94)、锥形量热(cone)等方法,研究了纳米氢氧化镁(MH)添加到六(4-DOPO羟甲基苯甲酸)环三磷腈化合物(FR)、聚磷酸铵(APP)和环氧树脂(EP)后,制备的新型复合阻燃材料(FR/APP/MH/EP)的阻燃及力学性能.结果表明:在固定FR/APP比例为1/1的前提下,添加1%(质量分数)的MH时,复合阻燃材料EP2(10%FR/10%APP/1%MH/EP)的LOI值达到36.4%,其热释放速率(pk-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)、一氧化碳释放率平均值(av-CO)较纯环氧树脂(EP0)分别下降了79.8%,6.73%,47.2%,33.3%,相对于EP1(10%FR/10%APP/EP)分别下降了20.0%,69.6%,83.6%,58.6%,同时EP2的拉伸、弯曲、冲击强度较EP1也分别提高了47.6%,75.2%,196%;SEM分析表明EP2燃烧后能够形成一层均匀、致密、连续的炭层,具有良好的阻燃、抑烟、降毒效果.
以天然锆英石(ZrSiO4),CaCO3,TiO2,Nd2O3,Al2O3,SiO2为原料,采用真空热压烧结技术制备掺钕钙钛锆石和榍石组合矿物固化体,借助X射线衍射(XRD)、扫描电镜(SEM)、背散射(BSE)、电感耦合等离子体质谱(ICP-MS)等分析手段,研究了组合矿物固化体的热压烧结温度、相结构及浸出性能等.结果表明:组合矿物固化体的较佳热压烧结温度为1130~1170℃,固化体的相对密度≥97.2%,主要物相为钙钛锆石(CaZrTi2O7)和榍石(CaTiSiO5)的组合矿物;固化体具有良好的化学稳定性,在90℃,pH值为5,7,9的水溶液中, Nd3+在42天的归一化浸出率分别为1.9×10-6,1.5×10-6,1.2×10-6g·m-2·d-1;pH值对固化体中Ca2+,Zr4+的浸出率没有明显的影响;在弱碱水溶液(pH=9)中,Ti4+,Nd3+的浸出率较低,Si4+,Al3+的浸出率较高.
采用镶嵌式技术制备了Al/Fe扩散偶,在铝熔点以上铁熔点以下进行扩散热处理,对Al/Fe液-固界面扩散反应层的生长动力学进行了分析,并建立了生长动力学方程.结果表明,Fe2Al5是热处理保温过程中唯一生成的新生相.在Fe2Al5连续单相层形成之前,其生长受Al原子和Fe原子的化学反应控制;一旦连续的Fe2Al5单相层形成,其生长则主要依赖于Al原子沿其晶界的扩散控制,且伴随着其晶粒尺寸的长大.在800℃以下热处理,可忽略晶粒长大对原子扩散的影响,其生长动力学方程为:y=2020.96exp(-78490/RT)t0.25.但当热处理温度超过铁熔点的0.7倍后,则不能忽略晶粒长大的影响,应适当减小生长动力学方程中的生长指数值.
利用两步酯化法合成新型醚酯增塑剂——柠檬酸三(三甘醇单丁酯)酯(TTBC),通过红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)对其进行表征,将聚乳酸(PLA)和TTBC按一定质量比进行熔融共混.采用差示扫描量热仪(DSC)、偏光显微镜(POM)、电子拉力机以及平行平板流变仪研究了不同含量的TTBC对PLA/TTBC性能的影响.结果表明:随着TTBC含量增加,PLA的玻璃化转变温度(Tg)、熔点(Tm)和冷结晶温度(Tcc)均逐渐向低温移动,邵氏D硬度逐渐降低.PLA/TTBC的断裂伸长率均在300%以上,拉伸强度保持在10MPa以上.PLA/TTBC的复数黏度(η*)和黏流活化能(ΔEη)显著下降.通过与增塑剂含量为25%(质量分数)的PLA/TBC对比发现,TTBC的增塑效率与耐迁移性均高于TBC.
利用不同热处理方式和球化工艺,获得两种显微组织和不同硬度的等温淬火球墨铸铁(Austempered Ductile Iron, ADI)材料,利用MMS-2A微机控制摩擦磨损试验机对比研究了两种等温淬火球墨铸铁材料、车轮材料与U71Mn钢轨匹配时的滚动磨损与损伤性能.结果表明:ADI材料与U71Mn钢轨匹配时的摩擦因数明显小于车轮材料;由于ADI材料具有自润滑效果导致其磨损率明显小于车轮材料,ADI材料的自润滑性能也降低了对摩副U71Mn钢轨的磨损率,其中含有较大球状石墨和较少残余奥氏体的ADI2材料和对摩副U71Mn钢轨的磨损率最小;ADI材料的磨损机制主要表现为轻微疲劳磨损,对摩副U71Mn钢轨的磨损机制主要表现为黏着和轻微疲劳磨损,而轮轨材料匹配时的塑性流动层显著,损伤以表面疲劳裂纹和剥层损伤为主.
使航空复合材料加筋板在湿热环境中(70℃、水浴)达到吸湿饱和状态,对普通加筋板(A型)和吸湿饱和加筋板(B型)进行压缩实验.两类加筋板的破坏形貌相似,主要是筋条的断裂、脱粘和壁板的分层、撕裂,但破坏位置显著不同,A型加筋板的破坏位置均在加筋板中部附近,而B型分别在靠近两端的部位破坏,表明B型加筋板的破坏位置具有不确定性.两类加筋板的屈曲形式均为筋条间壁板的屈曲和中间2根筋条的屈曲,但两类加筋板相同位置的失稳壁板的弯曲方向相反,说明湿热环境对失稳壁板的弯曲方向影响较大.B型加筋板在压缩载荷下仍存在后屈曲过程,湿热环境对加筋板的屈曲载荷影响较小,对破坏载荷影响较大,较A型加筋板相比两者分别下降了3.1%和22.2%.
综述了连续纤维增强聚合物基复合材料的低速冲击响应研究进展.讨论了测试方法及相关影响参数,例如冲头的形状、冲击速率对复合材料冲击的影响;介绍了冲击损伤的类型,进一步描述了层压板结构参数(如层合板厚度,铺层和缝纫)、复合材料组分材料性能(如纤维,树脂和纤维/树脂界面)以及预应力、环境条件等的影响;提出了纤维增强聚合物基复合材料冲击响应研究今后的发展方向.
综述了碳点的制备、发光原理以及应用的研究进展,重点介绍了碳点制备方法,讨论了自上而下法中电弧放电、激光消融和电化学氧化法以及自下而上法中燃烧法、模板法、水热法及热解法等制备碳点的优缺点、荧光量子产率以及研究趋势;指出未来研究中,需进一步优化碳点合成及修饰方法,深入探究碳点发光机理,提高碳点荧光量子产率;而制备能精确、灵敏、快速且易于检测荧光信号的碳点是其在应用中为各种化学检测及分析提供新技术和新方法的关键.