Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (5): 27-32    DOI: 10.11868/j.issn.1001-4381.2015.05.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
聚氨酯蜂窝纸板动力学性能及其本构模型
张勇1,2, 谢卫红2, 刘宏伟2, 张峰2
1. 中国矿业大学 力学与建筑工程学院, 江苏 徐州 221008;
2. 空军勤务学院 机场工程与保障系, 江苏 徐州 221000
Dynamic Mechanical Properties and Constitutive Model of Honeycomb Paperboard Filled with Polyurethane
ZHANG Yong1,2, XIE Wei-hong2, LIU Hong-wei2, ZHANG Feng2
1. School of Mechanics & Civil Engineering, China University of Mining & Technology, Xuzhou 221008, Jiangsu, China;
2. Department of Airport Engineering and Safeguard, Air Force Service College, Xuzhou 221000, Jiangsu, China
全文: PDF(2276 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 将聚氨酯填充到蜂窝纸板的孔隙中制作了聚氨酯蜂窝纸板复合材料,进而对其进行落锤冲击实验.通过落锤实验得到聚氨酯蜂窝纸板复合材料的应力-应变曲线,对影响其动力学性能的复合材料孔径、厚度、横截面尺寸及冲击速率四个因素进行了分析.结果表明:复合材料的动态屈服强度和动态弹性极限随着蜂窝纸芯的孔径、复合材料厚度和横截面积的增大而减小,随着冲击速率的增大而提高.在实验数据的基础上拟合了复合材料的动态本构方程,并对本构方程与实验数据进行了比较,拟合效果较好.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勇
谢卫红
刘宏伟
张峰
关键词 蜂窝纸板聚氨酯泡沫复合材料落锤实验动态本构模型    
Abstract:A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic mechanical properties of the material. Based on the experimental results, the mechanical behavior of the material was analyzed through influencing factors including honeycomb core diameter, thickness, cross-section area and impact velocity. It is shown that the dynamic yield strength and elastic limit increase with the increase of impact velocity, and decrease with the increase of honeycomb core diameter, thickness and cross-section area. Then the dynamic constitutive model is established. It is proved that the curves of constitutive model fit well with those of experimental data.
Key wordshoneycomb paperboard    polyurethane foam    composite material    drop test    dynamic constitutive model
收稿日期: 2013-10-18      出版日期: 2015-05-20
中图分类号:  TB332  
基金资助:国家自然科学基金面上项目(51478462)
通讯作者: 张勇(1980-),男,博士,讲师,研究方向为防护工程结构与材料,联系地址:江苏省徐州市鼓楼区西阁街85号空军勤务学院机场工程系(221000),freebirdzy1980@163.com     E-mail: freebirdzy1980@163.com
引用本文:   
张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
ZHANG Yong, XIE Wei-hong, LIU Hong-wei, ZHANG Feng. Dynamic Mechanical Properties and Constitutive Model of Honeycomb Paperboard Filled with Polyurethane. Journal of Materials Engineering, 2015, 43(5): 27-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.05.005      或      http://jme.biam.ac.cn/CN/Y2015/V43/I5/27
[1] 于成果,李良春. 空投安全着陆的实现途径[J]. 包装工程,2007, 28(10):135-137.YU Cheng-guo, LI Liang-chun. Ways of air-drop safety landing[J]. Packaging Engineering, 2007, 28(10):135-137.
[2] WANG Zhi-wei, E Yu-ping. Energy-absorbing properties of paper honeycombs under low and intermediate strain rates[J]. Packaging Technology and Science, 2012, 25(3):173-185.
[3] WANG Zhi-wei, E Yu-ping. Mathematical modelling of energy absorption property for paper honeycomb in various ambient humidities[J]. Materials & Design, 2010, 31(9):4321-4328.
[4] E Yu-ping, WANG Zhi-wei. Effect of relative humidity on energy absorption properties of honeycomb paperboards[J]. Packaging Technology and Science, 2010, 23(8):471-483.
[5] WANG Dong-mei, WANG Zhi-wei. Experimental investigation into the cushioning properties of honeycomb paperboard[J]. Packaging Technology and Science, 2010, 21(6):309-316.
[6] WANG Dong-mei, WANG Zhi-wei, LIAO Qiang-hua. Energy absorption diagrams of paper honeycomb sandwich structures[J]. Packaging Technology and Science, 2009, 22(2):63-67.
[7] WANG Liang, SUN Ling. Application of double-vaccum-bag process to the splicing technology for honeycomb sandwich structure[J]. Journal of Wuhan University of Technology, 2009, 31(21):52-55.
[8] HIROAKI N, TADAHARU A, WAKAKO A. In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions[J]. International Journal of Impact Engineering, 2009, 36(1):73-80.
[9] CHEN D H, OZAKI S. Analysis of in-plane elastic modulus for a hexagonal honeycomb core:effect of core height and proposed analytical method[J]. Composite Structures, 2009, 88(1):17-25.
[10] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs-a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182.
[11] ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structure:a finite element study[J]. International Journal of Impact Engineering, 2005, 32(1-4):650-664.
[12] SHERWOOD J A, FROST C C. Constitutive modeling and simulation of energy absorbing polyurethane foam[J]. Polymer Engineering and Science, 1992, 32(16):1138-1146.
[13] 胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料本构关系的研究[J]. 力学学报,1998, 30(2):151-156. HU Shi-sheng, LIU Jian-fei, WANG Wu. Study of the constitutive relationship of rigid polyurethane foam[J]. Acta Mechanica Sinica, 1998, 30(2):151-156.
[14] 卢子兴. 聚氨酯泡沫塑料拉伸本构关系及其失效机理的研究[J]. 航空学报, 2002, 23(2):151-154. LU Zi-xing. Investigation into the tensile constitutive relation and failure mechanism of pur foamed plastics[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):151-154.
[15] 谭军,韩旭,刘鑫. 某特种车空投着陆过程数值仿真分析与改进[J]. 包装工程,2010,31(1):57-61. TAN Jun, HAN Xu, LIU Xin. Numerical analysis and improvement of airdrop landing process of special vehicles[J]. Packaging Engineering, 2010,31(1):57-61.
[16] 林玉亮,卢芳云,王晓燕,等. 低密度聚氨酯泡沫压缩行为试验研究[J]. 高压物理学报,2006,20(1):88-92. LIN Yu-liang, LU Fang-yun, WANG Xiao-yan, et al. Experimental study of the compressible behavior of low-density polyurethane foam[J]. Chinese Journal of High Pressure Physics, 2006, 20(1):88-92.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn