Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (6): 26-30    DOI: 10.11868/j.issn.1001-4381.2015.06.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
微沸法合成纳米莫来石及活化能的研究
杨中正1, 姚亚刚2, WONG C P2, 陆跃军1
1. 华北水利水电大学 河南省重点材料实验室, 郑州 450011;
2. 乔治亚理工学院 材料科学与工程学院, 亚特兰大 30332-0245
Activation Energy and Synthesis of Nano-mullite by Micro-boiling Method
YANG Zhong-zheng1, YAO Ya-gang2, WONG C P2, LU Yue-jun1
1. Henan Provincial Key Material Laboratory, North China University of Water Resources and Electric Power, Zhengzhou 450011, China;
2. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta 30332-0245, USA
全文: PDF(1843 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以硝酸铝和硅溶胶为原料,采用微沸法对合成纳米莫来石及其活化能进行研究,并用热重-差示扫描热量计(TG-DSC)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)对合成莫来石的粒度、相组成和形貌进行分析。结果表明:在原料中的铝硅摩尔比为3:1的条件下,温度为854℃时莫来石开始形成,温度为920℃时Al-Si尖晶石开始转变为莫来石,温度为1200℃时莫来石化完成,合成莫来石的活化能为(634.52±28.90)kJ·mol-1。经过1200℃煅烧后,莫来石含Al2O3的摩尔分数为59.8%,平均粒度约为31.7nm,形状为针状,并由这些针状莫来石构成连续的网络结构。随着铝硅摩尔比的增加,合成莫来石的温度降低,活化能降低。当铝硅摩尔比增加至6:1,合成莫来石的活化能降至(514.73±14.40)kJ·mol-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨中正
姚亚刚
WONG C P
陆跃军
关键词 微沸法纳米莫来石活化能    
Abstract:Nano-mullite was synthesized by micro-boiling method using aluminium nitrate and silica sol as raw materials, and the activation energy was studied. Grain size, phase composition and morphology of the mullite were analyzed by means of thermogravimetry-differential scanning calorimeter(TG-DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The results show that when Al/Si mole ratio is 3:1 in the raw materials, mullite starts forming at 854℃, Al-Si spinel starts transforming into mullite at 920℃, mullitization is completed at 1200℃, and activation energy of mullite synthesis is (634.52±28.90) kJ·mol-1. After mullite is calcined at 1200℃, and the mole fraction of mullite containing Al2O3 is 59.8%, the average particle size is 31.7nm, with needle shape, and with these needle shape mullite forming a continuous network structure. The synthesizing temperature of mullite and activation energy decrease as mole ratio of Al/Si increases. Activation energy of synthesizing mullite decreases to (514.73 ± 14.40) kJ·mol-1 when mole ratio of Al/Si increases to 6:1.
Key wordsmicro-boiling method    nano-mullite    activation energy
收稿日期: 2013-10-12      出版日期: 2015-06-20
中图分类号:  TG174  
通讯作者: 杨中正(1967—),男,教授,主要从事无机材料的加工和性能研究,联系地址:河南省郑州市北环路36号华北水利水电大学河南省重点材料实验室(450011),E-mail:yangzz01@163.com     E-mail: yangzz01@163.com
引用本文:   
杨中正, 姚亚刚, WONG C P, 陆跃军. 微沸法合成纳米莫来石及活化能的研究[J]. 材料工程, 2015, 43(6): 26-30.
YANG Zhong-zheng, YAO Ya-gang, WONG C P, LU Yue-jun. Activation Energy and Synthesis of Nano-mullite by Micro-boiling Method. Journal of Materials Engineering, 2015, 43(6): 26-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.06.005      或      http://jme.biam.ac.cn/CN/Y2015/V43/I6/26
[1] REINHARD X,FISCHER H S,DIETMAR V. Formation of aluminum rich 9:1 mullite and its transformation to low alumina mullite upon heating [J]. Journal of the European Ceramic Society,1996, 16 (3): 109-113.
[2] MANUELA J A. Synthesis and phase transformations of mullites obtained from SiO2-Al2O3 gels [J]. Journal of the European Ceramic Society,1996, 16 (2): 781-789.
[3] 杨中正, 赵顺波, 邢振贤, 等. 高铝矾土和煤矸石合成矾土基莫来石料的研究 [J]. 材料工程, 2010,(5): 51-55.YANG Zhong-zheng,ZHAO Shun-bo,XING Zhen-xian,et al.Preparation of bauxite-based homogenized mullite grogs with bauxite and coal gangue[J].Journal of Materials Engineering,2010,(5):51-55.
[4] BELHOUCHET H, HAMIDOUCHE M, TORRECILLAS R, et al. The non-isothermal kinetics of mullite formation in boehmite-zircon mixtures [J]. Journal of Thermal Analysis and Calorimetry, 2014, 116 (2): 795-803.
[5] BULJAN I, KOSANOVIA?C, KRALJ D. A novel synthesis of nano-sized mullite from aluminosilicate precursors [J]. Journal of Alloys and Compounds, 2011, 509 (32): 8256-8261.
[6] LI J H, MA H W, HUANG W H. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite [J]. Journal of Hazardous Materials, 2009, 166 (2-3): 1535-1539.
[7] LI S, DU H, GUO A. Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in fly ash body [J]. Ceramics International, 2012, 38 (2): 1027-1032.
[8] SEMBIRING S, SIMANJUNTAK W, MANURUNG P, et al. Synthesis and characterisation of gel-derived mullite precursors from rice husk silica [J]. Ceramics International, 2014, 40 (5): 7067-7072.
[9] SANAD M M S, RASHAD M M, ABDEL-AAL E A, et al. Effect of Y3+, Gd3+ and La3+ dopant ions on structural, optical and electrical properties of o-mullite nanoparticles [J]. Journal of Rare Earths, 2014, 32 (1): 37-42.
[10] WANG Y, CHENG H, LIU H, et al. Microstructure and room temperature mechanical properties of mullite fibers after heat-treatment at elevated temperatures [J]. Materials Science and Engineering: A, 2013, 578: 287-293.
[11] SARIN P, YOON W, HAGGERTY R P, et al. Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite—An in situ, high temperature, synchrotron diffraction study [J]. Journal of the European Ceramic Society, 2008, 28 (2): 353-365.
[12] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite—A review [J]. Journal of the European Ceramic Society, 2008, 28 (2): 329-344.
[13] 王法辉, 刘 莹. 莫来石纤维含量对陶瓷基摩擦材料摩擦磨损性能的影响 [J]. 材料工程, 2012, (12): 61-65. WANG Fa-hui,LIU Ying.Effects of mullite fiber content on friction and wear properties of ceramic-based friction material[J].Journal of Materials Engineering,2012,(12):61-65.
[14] WANG S, SHEN X Q, YAO H C, et al. Synthesis and sintering of pre-mullite powders obtained via carbonate precipitation [J]. Ceramics International, 2010, 36 (2): 761-766.
[15] SUEYOSHI S S,CONTRERAS-SOTO C A. Fine pure mullite powder by homogeneous precipitation [J]. Journal of the European Ceramic Society, 1998, 18 (2): 1145-1152.
[16] SANAD M M S, RASHAD M M, ABDEL-AAL E A, et al. Optical and electrical properties of Y3+ ion substituted orthorhombic mullite Y(x)Al(6-x) Si2O13 nanoparticles [J]. Journal of Materials Science: Materials in Electronics, 2014, 25 (6): 2487-2493.
[17] KUTTY T R N,NAYAK M. Photoluminescence of Eu2+-doped mullite (xAl2O3·ySiO2; x/y=3/2 and 2/1) prepared by a hydrothermal method [J]. J Materials Chemistry and Physics 2000, 65 (2): 158-165.
[18] YOSHIDA K, HYUGA H, KONDO N, et al. Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method [J]. Materials Science and Engineering: B, 2010, 173 (1-3): 66-71.
[19] WANG W, WENG D, WU X. Structure evolution and thermal stability of La2O3-doped mullite fibers via sol-gel method [J]. Journal of Rare Earths, 2012, 30 (2): 175-180.
[20] GUO X, LI W, NAKANISHI K, et al. Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation [J]. Journal of the European Ceramic Society, 2013, 33 (10): 1967-1974.
[21] SANTANA L N L, GOMES J, NEVES G A, et al. Mullite formation from bentonites containing kaolinite: Effect of composition and synthesis parameters [J]. Applied Clay Science, 2014, 87: 28-33.
[22] RUIZ DE SOLA E, ESTEVAN F, ALARC N J. Low-temperature Ti-containing 3:2 and 2:1 mullite nanocrystals from single-phase gels [J]. Journal of the European Ceramic Society, 2007, 27 (7): 2655-2663.
[1] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[2] 张国芳, 翟亭亭, 胡锋, 侯忠辉, 张羊换, 许剑轶. 纳米CuO催化剂晶粒尺寸对Mg2Ni基复合材料储氢性能的影响[J]. 材料工程, 2018, 46(7): 151-156.
[3] 宋海硕, 周登凤, 张道海, 郭建兵. 短玻纤增强尼龙10T复合材料的热氧老化性能[J]. 材料工程, 2017, 45(12): 43-49.
[4] 林婷惠, 曹长林, 陈庆华, 钱庆荣, 黄宝铨, 夏新曙, 林新土, 肖荔人. r-PTFE对PBT非等温结晶动力学的影响[J]. 材料工程, 2016, 44(3): 92-96.
[5] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[6] 庄园园, 司小娟, 陈建军, 程丹丹, Jeong Cheol Kim, 王依民. UHMWPP/UHMWPE合金纤维结晶能力与结晶活化能研究[J]. 材料工程, 2008, 0(10): 239-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn