Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (6): 46-51    DOI: 10.11868/j.issn.1001-4381.2015.06.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响
王宁, 李健, 关志军, 谭凯
西北工业大学 材料学院, 西安 710072
Effect of Processing Parameters on Strain Distribution During Near-isothermal Canned Forging for Molybdenum Powder Sinter
WANG Ning, LI Jian, GUAN Zhi-jun, TAN Kai
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(3038 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 运用有限元软件对钼粉烧结体近等温包套锻造成形过程进行了分析。讨论了不同工艺参数(温度、摩擦因数、锻造速率)对应变分布的影响。结果表明:随着锻造温度的升高,坯料的平均等效应变逐渐增大,但变形不均匀;随着摩擦因数的增加,坯料平均等效应变逐渐增大,同时由于变形不均匀容易出现断裂裂纹;锻造速率对坯料应变的影响不显著。通过正交实验分析得知,温度对变形均匀性影响最显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宁
李健
关志军
谭凯
关键词 数值模拟近等温包套锻造钼粉烧结体工艺参数应变    
Abstract:Near-isothermal canned forging for molybdenum powder sinter was investigated by using finite element software. The influence of process parameters (temperature, friction coefficient and forging rate) on strain distribution was discussed. The results show that the average equivalent strain increases with the rising of forging temperature, but the corresponding deformation is non-uniform. Average equivalent strain increases with the increase of friction coefficient, meanwhile, the fracture crack easily occurs owing to non-uniform deformation. The effect of forging rate on strain is not obvious. Through analysis on the orthogonal experiment, the effect of temperature on deformation uniformatity is the most remarkable.
Key wordsnumerical simulation    near-isothermal canned forging    molybdenum powder sinter    process parameter    strain
收稿日期: 2013-06-20      出版日期: 2015-06-20
中图分类号:  TG376.2  
通讯作者: 王宁(1988—),女,硕士研究生,主要从事材料塑性加工及仿真模拟研究,联系地址:陕西省西安市友谊西路127号西北工业大学材料学院(710072),E-mail:wnfriends321@163.com     E-mail: wnfriends321@163.com
引用本文:   
王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
WANG Ning, LI Jian, GUAN Zhi-jun, TAN Kai. Effect of Processing Parameters on Strain Distribution During Near-isothermal Canned Forging for Molybdenum Powder Sinter. Journal of Materials Engineering, 2015, 43(6): 46-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.06.008      或      http://jme.biam.ac.cn/CN/Y2015/V43/I6/46
[1] OHSER-WIEDEMANN R, MARTIN U, SEIFERT H J, et al. Densification behaviour of pure molybdenum powder by spark plasma sintering[J].Refractory Metals & Hard Materials,2010,28(4):550-557.
[2] LEICHTFRIED GSCHNEIBEL J H, HEILMAIER M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys[J].Physical Metallurgy and Materials Science,2006,37(10):2955-2961.
[3] SINGH S, JHA A K, KUNAR S. Upper bound analysis and experimental investigations of dynamic effects during sinter-forging of irregular polygonal performs[J].Materials Processing Technology, 2007,194(1):134-144.
[4] HUANG Cheng-chao, CHENG Jung-ho. Forging simulation of sintered powder compacts under various frictional conditions[J]. Mechanical Sciences,2002,44(3):489-507.
[5] SHANMUGASUNDARAM D, CHANDRAMOULI R. Tensile and impact behavior of sinter-forged Cr, Ni and Mo alloyed powder metallurgy steels[J].Materials & Design,2009,30(9):3444-3449.
[6] 华林,毛华杰,赵仲治.粉末冶金锻造变形力和密度计算[J].粉末冶金工业,2010,10(1):26-31.HUANG Lin, MAO Hua-jie, ZHAO Zhong-zhi. Calculation of pressure and densification for powder forging[J].Powder Metallurgical Industry,2010,10(1):26-31.
[7] 周灿栋,蒋国昌,朱钰如.粉末锻造制备含氮奥氏体不锈钢[J].粉末冶金技术,2004,22(1):41-44.ZHOU Can-dong, JIANG Guo-chang, ZHU Yu-ru. Production of nitrogenous austenitic stainless steel by powder forging[J].Powder Metallurgy Technology,2004,22(1):41-44.
[8] 王川.TiAl基合金板材制备与组织性能研究[D].哈尔滨:哈尔滨工业大学,2007.WANG Chuan. Preparation, microstructure and mechanical properties of TiAl based alloy sheet[D].Harbin: Harbin Institute of Technology,2007.
[9] 张宏亮.粉末冶金钼管热挤压工艺基础研究[D].太原:太原理工大学,2010.ZHANG Hong-liang. The fundamental research of hot extrusion process for powder metallurgy molybdenum tube[D].Taiyuan: Taiyuan University of Technology,2010.
[10] 赵传涛.非致密体钼的热压扭成形数值模拟[D].合肥:合肥工业大学,2008. ZHAO Chuan-tao. Numerical simulation of hot torsion and compression of porous molybdenum[D].Hefei: Hefei University of Technology,2008.
[11] 薛克敏,王晓溪,李萍,等.纯钼粉多孔烧结材料ECAP的数值模拟及实验[J].中国有色金属学报,2011,21(1):32-37. XUE Ke-min, WANG Xiao-xi, LI Ping, et al. Numerical simulation study of ECAP on sintered power molybdenum materials[J].Transactions of Nonferrous Metals Society of China,2011,21(1): 32-37.
[12] HONG Shen-ze, WANG Shu-jun, CAI Ke-yu. Thermo dynamic couple numerical simulation of the temperature field in hot forging forming process[J].Materials Processing Technology, 2009,41(12):1120-1125.
[13] 罗文波,胡云贵,胡自化.圆柱平板间镦粗的热力分析[J].塑性工程学报,2000,7(1):64-68. LUO Wen-bo, HU Yun-gui, HU Zi-hua. Thermo chemical analysis of upsetting of cylindrical billet between rough plate dies [J].Plasticity Engineering,2000,7(1):64-68.
[14] 李萍,薛克敏,吕炎.Ti-15-3合金反挤压成形的热力耦合模拟[J].中国有色金属学报,2002,12(3):578-581. LI Ping, XUE Ke-min, LU Yan. Numerical simulation of coupled thermo-mechanical behavior of Ti-15-3 alloy during back-extrusion[J].Transactions of Nonferrous Metals Society of China,2002,12(3):578-581.
[15] CHO J R, YOO Y S, JEONG H S. The Al powder process: its finite analysis[J].Materials Processing Technology,2001,111:204-209.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[3] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[4] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[5] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[6] 刘石双, 仇平, 蔡建明, 李娟, 黄旭, 于辉, 刘利刚. Ti60钛合金室温保载疲劳性能及断裂行为[J]. 材料工程, 2019, 47(7): 112-120.
[7] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[8] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[9] 蒋少松, 杨天豪, 孙宏宇, 何玉石, 卢振, 王瑞卓. 超声波振动对钛箔拉伸性能及位错分布的影响[J]. 材料工程, 2019, 47(2): 84-89.
[10] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[11] 郭洪宝, 谢骏. 2D-SiC/SiC复合材料损伤耦合力学行为[J]. 材料工程, 2019, 47(10): 160-165.
[12] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[13] 王韬, 葛勇, 郎建林, 孙琦伟, 厉蕾, 颜悦. 注射压缩成型与常规注射成型的模腔压力对比分析[J]. 材料工程, 2018, 46(4): 127-133.
[14] 鲁雄, 杨旭静, 段书用, 郑娟. 玻纤增强聚丙烯复合材料的应变率敏感特性[J]. 材料工程, 2018, 46(4): 146-151.
[15] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn