Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (7): 1-7    DOI: 10.11868/j.issn.1001-4381.2015.07.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
转速对搅拌摩擦焊接搅拌区晶粒尺寸影响
张昭1,2, 吴奇1,2, 张洪武1,2
1. 大连理工大学 工程力学系, 辽宁 大连 116024;
2. 大连理工大学 工业装备结构分析国家重点实验室 辽宁 大连 116024
Effect of Rotating Speeds on Grain Sizes in Stirring Zone of Friction Stir Weld
ZHANG Zhao1,2, WU Qi1,2, ZHANG Hong-wu1,2
1. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, Liaoning, China;
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(2958 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于搅拌摩擦焊接的完全热力耦合模型,跟踪材料物质点运动轨迹,划分出不同搅拌头转速下搅拌区域边界.沿材料物质点迹线提取出真实应变与温度历程,可进一步计算Zener-Hollomon参数并利用经验公式预测搅拌区晶粒尺寸.经计算发现较大转速工况下,搅拌区尺寸较大.搅拌区晶粒尺寸随焊接温度的增加而增加,随应变率的增加而减小.随着搅拌头转速的增加,焊接区材料温度与等效应变率均有明显增长,但是温度影响更为明显,平均晶粒尺寸随搅拌头转速的增加而增加.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昭
吴奇
张洪武
关键词 搅拌摩擦焊接Zener-Hollomon参数完全热力耦合模型    
Abstract:The flow tracers of material particles are considered to determine the boundary of the stirring zone in friction stir welding based on a fully coupled thermo mechanical model. The real strain tensors and temperature histories are given from the tracer movements to calculate the Zener-Hollomon parameters. The grain sizes can be then predicted by the empirical formation. The width of SZ on the top surface can increase with the increase of the rotation speed. The average grain size in SZ can be increased with the increase of the welding temperature and can be decreased with the increase of the strain rates. Both the temperature and the strain rates can be obviously increased with the increase of the rotating speed. But the effect of the welding temperature is more obvious, the average grain size is increased with the increase of the rotating speed.
Key wordsfriction stir welding    Zener-Hollomon parameter    fully coupled thermo-mechanical model
收稿日期: 2013-12-02      出版日期: 2015-07-27
中图分类号:  TG402  
通讯作者: 张昭(1979-),男,教授,博士,博士生导师,主要研究方向:计算工艺力学,联系地址:辽宁省大连市凌工路2号大连理工大学工程力学系(116024)     E-mail: zhangz@dlut.edu.cn
引用本文:   
张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
ZHANG Zhao, WU Qi, ZHANG Hong-wu. Effect of Rotating Speeds on Grain Sizes in Stirring Zone of Friction Stir Weld. Journal of Materials Engineering, 2015, 43(7): 1-7.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.07.001      或      http://jme.biam.ac.cn/CN/Y2015/V43/I7/1
[1] DE A, DEBROY T. A perspective on residual stresses in welding[J]. Science and Technology of Welding and Joining, 2011, 16(3): 204-208.
[2] 张正伟,张昭,张洪武. 搅拌摩擦焊残余应力及残余变形数值分析[J]. 计算力学学报,2013, 30(增刊1): 16-21. ZHANG Zheng-wei, ZHANG Zhao, ZHANG Hong-wu. Investigations on residual stress and residual distortion of friction stir welding[J]. Chinese Journal of Computational Mechanics, 2013, 30(Suppl 1): 16-21.
[3] 李敬勇, 亢晓亮, 赵阳阳. 搅拌头几何特征对搅拌摩擦焊试板温度场的影响[J]. 航空材料学报, 2013, 33(1): 28-32. LI Jing-yong, KANG Xiao-liang, ZHAO Yang-yang. Influence of geometrical features of stir pins on temperature distributions within workpiece during friction stir welding of aluminum alloys[J]. Journal of Aeronautical Materials, 2013, 33(1): 28-32.
[4] 张昭,张洪武. 基于欧拉模型的搅拌摩擦焊接界面行为及产热数值[J]. 塑性工程学报,2012, 19(6): 130-133. ZHANG Zhao, ZHANG Hong-wu. Eulerian-model-based numerical researches on interface behavior and heat generation in friction stir welding process[J]. Journal of Plasticity Engineering, 2012, 19(6): 130-133.
[5] 张正伟,张昭,刘亚丽,等. 搅拌摩擦焊数值模拟过程中不同转速与热输入功率之间关系研究[J]. 焊接,2012, (4): 19-24. ZHANG Zheng-wei, ZHANG Zhao, LIU Ya-li, et al. Effect of rotation speed on heat generations in simulation of friction stir welding[J]. Welding & Joining, 2012, (4): 19-24.
[6] 姬书得,孟庆国,邹爱丽,等. 搅拌针形状影响搅拌摩擦焊过程金属塑性流动规律的数值模拟[J]. 焊接学报,2013, 34(2): 93-96. JI Shu-de, MENG Qing-guo, ZOU Ai-li, et al. Effect of pin geometry on material flow during simulations of friction stir welding[J]. Transactions of the China Welding Institution, 2013, 34(2): 93-96.
[7] 殷鹏飞,张蓉,熊江涛,等. 搅拌摩擦焊准稳态热力耦合过程数值模拟研究[J]. 物理学报,2013, 62(1): 018102. YIN Peng-fei, ZHANG Rong, XIONG Jiang-tao, et al. Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state[J]. 2013, 62(1): 018102.
[8] HEIDARZADEH A, SAEID T, KHODAVERDIZADEH H, et al. Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints[J]. Metallurgical and Materials Transactions B, 2013, 44: 175-183.
[9] CAVALIERE P, CAMPANILE G, PANELLA F, et al. Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding[J]. Journal of Materials Processing Technology, 2006, 180: 263-270.
[10] 张昭,张洪武. 搅拌摩擦焊中动态再结晶及硬度分布的数值模拟[J]. 金属学报,2006, 42(9): 998-1002. ZHANG Zhao, ZHANG Hong-wu. Numerical simulation of dynamic recrystallization and hardness distribution in friction stir welding process[J]. Acta Metallurgica Sinica, 2006, 42(9): 998-1002.
[11] PAN W X, LI D X ,TARTAKOVSKY A M, et al. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy[J]. International Journal of Plasticity, 2013, 48: 189-204.
[12] BUFFA G, DUCATO A, FRATINI L. FEM based prediction of phase transformations during friction stir welding of Ti6Al4V titanium alloy[J]. Materials Science and Engineering: A, 2013, 581: 56-65.
[13] CHANG C I, LEE C J, HUANG J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia, 2004, 51: 509-514.
[14] GERLICH A, YAMAMOTO M, NORTH T H. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds[J]. Metallurgical and Materials Transactions A, 2007, 38: 1291-1302.
[15] ROBSON J D, CAMPBELL L. Model for grain evolution during friction stir welding of aluminium alloys[J]. Science and Technology of Welding and Joining, 2010, 15(2): 171-176.
[16] 张昭,刘亚丽,陈金涛,等. 搅拌摩擦焊接过程中材料流动形式[J]. 焊接学报,2007, 28(11): 17-21. ZHANG Zhao, LIU Ya-li, CHEN Jin-tao, et al. Material flow in friction stir welding[J]. Transactions of the China Welding Institution, 2007, 28(11): 17-21.
[17] ZHANG Z, CHEN J T. Computational investigations on reliable finite element-based thermomechanical-coupled simulations of friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2012, 60: 959-975.
[18] 张昭,别俊. 搅拌摩擦焊接过程数值仿真的完全热力耦合模型[J].中国机械工程,2008,19: 1240-1244. ZHANG Zhao, BIE Jun. Fully coupled thermo-mechanical model for numerical simulation of friction stir welding process[J]. China Mechanical Engineering, 2008,19: 1240-1244.
[19] GERLICH A, YAMAMOTO M, NORTH T H. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds[J]. Metallurgical and Materials Transactions A, 2007, 38: 1291-1302.
[20] GEERTRUYDEN W H V, MISIOLEK W Z, PAUL T, et al. Grain structure evolution in a 6061 aluminum alloy during hot torsion[J]. Materials Science and Engineering: A, 2006, 419:105-114.
[21] RAJAKUMAR S, BALASUBRAMANIAN V. Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters[J]. Materials and Design, 2012, 40: 17-35.
[22] KIM S, LEE C G, KIM S J. Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys[J]. Materials Science and Engineering: A, 2008, 478: 56-64.
[23] LIU F C, MA Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2008,39: 2378-2388.
[24] SATO Y S, URATA M, KOKAWA H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063[J]. Metallurgical and Materials Transactions A, 2002,33: 625-635.
[25] ASGHARZADEH H, SIMCHI A, KIM H S. Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy[J]. Materials Science and Engineering: A, 2012, 542: 56-63.
[1] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[2] 王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
[3] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[4] 崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
[5] 黄光杰, 钱宝华, 游红. 45钢高温拉伸峰值应力和变形储能与Z参数的关系函数研究[J]. 材料工程, 2007, 0(12): 21-25.
[6] 张昭, 陈金涛, 张洪武. 搅拌头尺寸变化对搅拌摩擦焊接的影响[J]. 材料工程, 2006, (1): 19-23,31.
[7] 潘崇超, 李殿国, 凌刚, 尹法杰, 马天军. Fe-15Cr-25Ni高温合金热压缩变形条件下的流变应力模型[J]. 材料工程, 2005, 0(6): 7-10,30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn