Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (7): 48-55    DOI: 10.11868/j.issn.1001-4381.2015.07.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
TC1钛合金的腐蚀加工及其对基体性能影响
林翠1,2, 赵晴1,2, 文庆杰3
1. 南昌航空大学 材料科学与工程学院, 南昌 330063;
2. 南昌航空大学 腐蚀与防护江西省高校重点实验室, 南昌 330063;
3. 成都飞机工业(集团)有限责任公司 工程制造部, 成都 610092
Corrosion Processing for TC1 Titanium Alloy and Its Effect on Matrix Properties
LIN Cui1,2, ZHAO Qing1,2, WEN Qing-jie3
1. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China;
2. Corrosion and Protection Key Laboratory of Colleges and Universities of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China;
3. Department of Engineering Manufacture, Chengdu Aircraft Industrial Group Co., Chengdu 610092, China
全文: PDF(2695 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 探讨了TC1钛合金腐蚀加工速度和质量的影响因素,测试了腐蚀加工后TC1钛合金的力学性能.氢氟酸浓度增加,加工速度提高;硝酸浓度较低时,腐蚀溶解占主导地位,浓度较高时,钝化起主要作用,当硝酸与氢氟酸的体积比为2时加工速度达到最大值;钛合金腐蚀加工速率与温度基本呈线性关系,加工时温度控制范围为28~30℃.复配添加剂可降低界面张力,它们的协同效应能够提高过渡区圆角质量、表面光亮度和腐蚀均匀性.腐蚀加工对TC1钛合金拉伸性能影响较小.腐蚀加工后的疲劳性能优于机械加工后的疲劳性能,其疲劳裂纹起源于加工面R圆角根部区域.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林翠
赵晴
文庆杰
关键词 TC1腐蚀加工加工速度表面质量力学性能    
Abstract:The influencing factors of corrosion processing rate and surface quality of TC1 titanium alloy were investigated. The mechanical properties of TC1 titanium alloy after corrosion processing were tested. Processing rate increases with the increasing hydrofluoric acid concentration; When nitric acid concentration is lower, corrosion dissolution dominates, when it is further increased, passivation plays the main role, when the volume ratio of nitric acid to hydrofluoric acid is two, the processing rate reaches the maximum value; corrosion processing rate exhibits linear relationship with the temperature, during corrosion processing, the temperature is controlled in the range of 28-30℃. Combined surfactants can lower the interface tension; their synergistic effect can improve the filleted corner quality of the transition zone, surface finish and corrosion uniformity. Corrosion processing has little effect on tensile property of TC1 titanium alloy. The fatigue property after corrosion processing is superior to that after mechanical processing, fatigue cracks initiate from the root zone of R filleted corner of the processed surface.
Key wordsTC1    corrosion processing    processing rate    surface quality    mechanical property
收稿日期: 2013-04-10      出版日期: 2015-07-27
中图分类号:  TG146.2+3  
通讯作者: 林翠(1976-),女,教授,从事材料的腐蚀与防护的研究,联系地址:南昌市丰和南大道696号南昌航空大学材料学院(330063)     E-mail: lincwi@sohu.com
引用本文:   
林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
LIN Cui, ZHAO Qing, WEN Qing-jie. Corrosion Processing for TC1 Titanium Alloy and Its Effect on Matrix Properties. Journal of Materials Engineering, 2015, 43(7): 48-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.07.009      或      http://jme.biam.ac.cn/CN/Y2015/V43/I7/48
[1] 黄伯云,李成功,石力开,等. 有色金属材料手册[M]. 北京:化学工业出版社,2009. 513-740. HUANG Bo-yun, LI Cheng-gong, SHI Li-kai, et al. Handbook of Non-ferrous Metal Materials[M]. Beijing: Chemical Industry Press, 2009. 513-740.
[2] GUO J J. Development and prospect of titanium industry in the world in 2005[J]. Rare Metals Letters, 2006, 25(7): 6-10.
[3] RACK H J, QAZI J I. Titanium alloys for biomedical applications[J]. Materials Science and Engineering C, 2006, 26(8): 1269-1277.
[4] 梁春华,李晓欣. 先进材料在战斗机发动机上的应用与研究趋势[J]. 航空材料学报,2013,32(6):32-36. LIANG Chun-hua, LI Xiao-xin. Application and development trend of advanced materials for fighter engine[J]. Journal of Aeronautical Materials, 2013, 32(6): 32-36.
[5] 曹春晓. 航空用钛合金的发展概况[J]. 航空科学技术,2005,(4):3-6. CAO Chun-xiao. General development situation of titanium alloys for aviation[J]. Aviation Science and Technology, 2005, (4): 3-6.
[6] 付艳艳,宋月清. 航空用钛合金的研究与应用进展[J]. 稀有金属,2006,30(6):850-856. FU Yan-yan, SONG Yue-qing. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6): 850-856.
[7] 航空制造工程手册总编委会.航空制造工程手册-特种加工[M]. 北京: 航空工业出版社,1993. 600-645. Aviation Manufacturing Engineering Handbook Editorial Board. Aviation Manufacturing Engineering Handbook-Special Processing[M]. Beijing: Aviation Industry Press, 1993. 600-645.
[8] 杨丁. 金属蚀刻技术[M]. 北京:国防工业出版社,2008.143-147. YANG Ding. Metal Etching Technology[M]. Beijing: National Defence Industry Press, 2008.143-147.
[9] CAKIR O. Chemical etching of aluminium[J]. Journal of Material Processing and Technology, 2008, 199(1-3): 337-340.
[10] BONG Y U, KUPPUSWAMY R. Revealing Obliterated Engraved Marks on High Strength Aluminium Alloy (AA7010) Surface by Etching Technique[J]. Forensic Science International, 2010, 195(1-3): 86-92.
[11] CAKIR O, TEMEL H, KIYAK M. Chemical etching of Cu-ETP copper[J]. Journal of Materials Processing Technology, 2005, 162-163: 275-279.
[12] ARMCO STEEL CORPORATION. Chemical milling process and bath therefor[P]. UK Patent: 13040431970-3-19[1973-1-24].
[13] MCDONNELL DOUGLAS CORPORATION. Chemical-milling of titanium and refractory metals[P]. USA Patent: 41167551977-9-6[1978-9-26].
[14] TAKASAKI A, OJIMA K, TANEDA Y. New phase formation in titanium aluminide during chemical etching[J]. Scripta Metallurgica et Materialia, 1994, 30(9): 1095-1098.
[15] SAY W C, TSAI Y Y. Surface characterization of cast Ti-6Al-4V in hydrofluoric-nitric pickling solutions[J]. Surface and Coatings Technology, 2004, 176: 337-343.
[16] LIM P Y, SHE P L, SHIH H C. Microstructure effect on microtopography of chemically etched α+β Ti alloys[J]. Applied Surface Science, 2006, 253: 449-458.
[17] 金蕾,李荻. 钛合金化学铣切及电化学加工[J]. 稀有金属材料与工程,1989,(2):66-71. JIN Lei, LI Di. Chemical milling and electrochemical machining[J]. Rare Metal Materials and Engineering, 1989, (2): 66-71.
[18] 张红,朱彦海. 钛合金化学铣切工艺研究[J]. 航空工艺技术,1996,(6):29-30. ZHANG Hong, ZHU Yan-hai. Chemical milling of Ti alloy[J]. Aviation Technology, 1996, (6): 29-30.
[19] 戚运莲,邓炬,洪权,等. 钛和钛合金化学铣切中的吸氢及其影响[J]. 航空制造技术,2000,(2):30-32. QI Yun-lian, DENG Ju, HONG Quan, et al. Hydrogen absorption and effect occurred during chemical milling of Ti and Ti alloy[J]. Aeronautical Manufacturing Technology, 2000, (2): 30-32.
[1] 王宇, 曹零勇, 李俊鹏, 张华, 郭富安. 中间退火对汽车用5182铝合金板组织和性能的影响[J]. 材料工程, 2016, 44(9): 76-81.
[2] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[3] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[4] 徐学宏, 王小群, 闫超, 王旭. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120.
[5] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[6] 曹宇, 刘荣军, 曹英斌, 龙宪海, 严春雷, 张长瑞. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44(7): 19-25.
[7] 王丙兴, 董福志, 王昭东, 王国栋. 超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究[J]. 材料工程, 2016, 44(7): 26-31.
[8] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
[9] 秦仁耀, 孙兵兵, 肇恒跃, 郭绍庆, 唐思熠, 张学军. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44(6): 92-97.
[10] 黄正华, 刘汪涵博, 戚文军, 徐静. 第三组元对Mg-Sn合金铸态组织与力学性能的影响[J]. 材料工程, 2016, 44(6): 56-62.
[11] 张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
[12] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[13] 张晓云, 曹东, 陆峰, 刘建华. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88.
[14] 张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
[15] 赵吉宾, 王志国, 赵宇辉, 龙雨, 王福雨, 来佑彬. 真空热处理对激光近净成形In625和C-276合金性能的影响[J]. 材料工程, 2016, 44(3): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn