Please wait a minute...
材料工程  2015, Vol. 43 Issue (7): 80-86    DOI: 10.11868/j.issn.1001-4381.2015.07.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
冯柳1,2, 周邦新1,3, 彭剑超1,3, 王均安1,3
1. 上海大学 材料研究所, 上海 200072;
2. 山东理工大学 分析测试中心, 山东 淄博 255049;
3. 上海大学 微结构重点实验室, 上海 200444
Characterization of a Complex Crystal Structure Within Cu-rich Precipitates in RPV Model Steel
FENG Liu1,2, ZHOU Bang-xin1,3, PENG Jian-chao1,3, WANG Jun-an1,3
1. Institute of Materials, Shanghai University, Shanghai 200072, China;
2. Analysis and Testing Center, Shandong University of Technology, Zibo 255049, Shandong, China;
3. Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
全文: PDF(2830 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 RPV模拟钢样品经过890℃水淬,660℃调质处理,然后在400℃时效13000h后,用高分辨透射电镜和能谱仪相结合的方法研究了RPV模拟钢中纳米富Cu析出相中的复杂晶体结构.纳米富Cu析出相的平均尺寸约为20nm,除了观察到常见的亚稳态9R结构、3R结构和稳态fcc结构外,还观察到同一富Cu析出相由3种不同的晶体结构组成,并分别分布在5个不同的区域中,包括1处9R、2处fcc 和2处3R 结构.9R结构与相邻的2个fcc结构形成的界面都具有特定的晶体取向,呈半共格关系,是由非孪晶9R结构演化而来.2处3R结构互为孪晶关系,是由孪晶9R结构演化而来.这种状态反映了纳米富Cu析出相从亚稳态演化到稳态结构的复杂过程.
E-mail Alert
关键词 RPV模拟钢热时效纳米富Cu析出相9R晶体结构    
Abstract:The specimens of the reactor pressure vessel (RPV) model steels were tempered at 660℃ after water quenching from 890℃, aging treatment was then conducted at 400℃ for 13000h. The Cu-rich precipitates were characterized by high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) in order to study the transition process from metastable to stable structure. The average size of the nano Cu-rich precipitates is about 20nm, besides the metastable 9R,3R and the stable fcc crystal structures, it is observed that three different crystal structures distributed in five different regions existing in the same nano Cu-rich precipitate, including one 9R, two of fcc and two of 3R crystal structures. The boundaries formed by 9R structure with its two adjacent fcc structures have specific crystal orientations, their interfaces are semi-coherent. They are evolved from non-twin 9R structure. The two 3R structures are twins, and evolved from twin 9R structure. The above phenomena reflect the complex processes from metastable to stable structure.
Key wordsreactor pressure vessel model steel    thermal aging    nano Cu-rich precipitate    9R crystal structure
收稿日期: 2013-10-09      出版日期: 2015-07-27
中图分类号:  TG113.25  
通讯作者: 周邦新(1935-),男,中国工程院院士,博士,从事核材料和核燃料元件的研究,联系地址:上海大学材料研究所(200072)     E-mail:
冯柳, 周邦新, 彭剑超, 王均安. RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征[J]. 材料工程, 2015, 43(7): 80-86.
FENG Liu, ZHOU Bang-xin, PENG Jian-chao, WANG Jun-an. Characterization of a Complex Crystal Structure Within Cu-rich Precipitates in RPV Model Steel. Journal of Materials Engineering, 2015, 43(7): 80-86.
链接本文:      或
[1] ZHANG Z W, LIU C T, WANG X L, et al. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions[J]. Acta Mater, 2012, 60(6-7):3034-3046.
[2] STYMAN P, HYDE J, WILFORD K, et al. Precipitation in long term thermally aged high copper, high nickel model RPV steel welds[J]. Prog Nucl Energ, 2012, 57(5):86-92.
[3] LAMBRECHT M, MESLIN E, MALERBA L, et al. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels[J]. J Nucl Mater, 2010, 406(1):84-89.
[4] FUJII K, NAKATA H, FUKUYA K, et al. Hardening and microstructural evolution in A533B steels under neutron irradiation and a direct comparison with electron irradiation[J].J Nucl Mater, 2010, 400(1):46-55.
[5] RADIGUET B, PAREIGE P, BARBY A. Irradiation induced clustering in low copper or copper free ferritic model alloys[J]. Nucl Instrum and Methods Phys Res B, 2009, 267:1496-1499.
[6] 吕铮. 核反应堆压力容器的辐照脆化与延寿评估[J].金属学报,2011,47(7):777-783. LU Z. Radiation-induced embrittlement and life evaluation of reactor pressure vessels[J]. Acta Metall Sin, 2011, 47(7): 777-783.
[7] NIFFENEGGER M, LEBER H. Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient[J]. J Nucl Mater, 2009,389(1): 62-67.
[8] BERGNER F, LAMBRECHT M, ULBRICHT A, et al. Comparative small-angle neutron scattering study of neutron-irradiated Fe, Fe-based alloys and a pressure vessel steel[J]. J Nucl Mater, 2010, 399(2-3):129-136.
[9] TIMOFEEV B. Assessment of the first generation RPV state after designed lifetime[J]. Int J of Pres Ves Pip, 2004, 81:703-712.
[10] LEE K, KIMB M, LEEB B, et al. Analysis of the master curve approach on the fracture toughness properties of SA508 Gr.4N Ni-Mo-Cr low alloy steels for reactor pressure vessels[J]. Mater Sci Eng A, 2010, 527: 3329-3334.
[11] CAMMELLI S, DEGUELDRE C, CERVELLINO A, et al. Cluster formation, evolution and size distribution in Fe-Cu alloy:Analysis by XAFS XRD and TEM[J]. Nucl Instrum and Methods Phys Res B, 2010, 268:632-637.
[12] SCHOBER M, EIDENBERGER E, STARON P, et al. Critical consideration of precipitate analysis of Fe-1at% Cu using atom probe and small-angle neutron scattering[J]. Microsc Microanal, 2011, 17(1):26-33.
[13] KAMADA Y, TAKAHASHI S, KIKUCHI H, et al. Effect of pre-deformation on the precipitation process and magnetic properties of Fe-Cu model alloys[J]. J Mater Sci, 2009, 44: 949-953.
[14] KOLLI R, SEIDMAN D. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel[J]. Acta Mater, 2008, 56: 2073-2088.
[15] 张植权, 周邦新, 蔡琳玲, 等. 利用APT研究RPV模拟钢中相界面原子偏聚特征[J]. 材料工程, 2014, (9): 89-93. ZHANG Zhi-quan, ZHOU Bang-xin, CAI Lin-ling, et al. Characterization of atom segregation at phase interfaces in RPV model steel by APT[J]. Journal of Materials Engineering , 2014, (9): 89-93.
[16] HABIBI H. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Mater Lett, 2005, 59: 1824-1827.
[17] LEE T, KIM Z Y, KIM S. Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel[J]. Philos Mag A, 2007, 87(2):209-224.
[18] HABIBI-BAJURIANI H, JENKINS M. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5[J]. Philos Mag Lett, 1996, 73(4): 155-162.
[19] BLACKSTOCK J, ACKLA G. Phase transitions of copper precipitates in Fe-Cu alloys[J]. Philos Mag A, 2001, 81:2127-2148.
[20] 蔡琳玲,徐刚,冯柳,等. 核反应堆压力容器模拟钢中纳米富Cu相的变形特征[J].上海大学学报:自然科学版,2012, 18(3):311-316. CAI L L, XU G, FENG L, et al. Deformation characterization of nano-scale Cu precipitates in RPV model steel[J]. J Shanghai Univ:Nat Sci, 2012, 18(3): 311-316.
[21] OTHEN P, JENKINS M, SMITH G, et al. Transmission electron microscope investigations of the structure of copper precipitates in thermally aged Fe-Cu and Fe-Cu-Ni[J]. Philos Mag Lett, 1991, 64: 383-391.
[22] DUPARC H, DOOLE R, JENKINS M, et al. A high-resolution electron microscopy study of copper precipitation in Fe-1.5 wt% Cu under electron irradiation[J]. Philos Mag Lett, 1995, 71:325-333.
[23] MOZEN R, JENKINS M, SUTTON A. The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy[J]. Philos Mag A, 2000, 80(3): 711-723.
[24] 徐刚,楚大峰,蔡琳玲,等. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报,2011,47(7): 905-911. XU G, CHU D F, CAI L L, et al. Investigation on the precipitation and structure evolution of Cu-rich nanophase in RPV model steel[J]. Acta Metall Sin, 2011,47(7): 905-911.
[25] HEO Y, KIM B Y, KIM J, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy[J]. Acta Mater, 2013,61: 519-528.
[26] OTHEN P,JENKINS M, SMITH G. High resolution electron microscopy studies of the structure of Cu-precipitates in α-Fe[J]. Philos Mag A, 1994, 70:1-24.
[27] FUJII K, OHKUBO T, FUKUY K. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels[J]. J Nucl Mater, 2011, 417: 949-952.
[28] MILLER M, WIRTH B, ODETTE G. Precipitation in neutron-irradiated Fe/Cu and Fe/Cu/Mn model alloys: a comparison of APT and SANS data[J]. Mater Sci Eng A, 2003, 353:133-139.
[29] 安治国,任慧平,刘宗昌,等. 1.18Cu高纯钢等温时效时富铜相的析出行为[J]. 特殊钢,2006, 27(2): 20-22. AN Z G, REN H P, LIU Z C, et al. Precipitation behavior of rich copper phase in 1.18Cu high purity steel during isothermal aging[J]. Special Steel, 2006, 27(2): 20-22.
[30] 王伟. 反应堆压力容器模拟钢中富Cu相的析出及晶体结构演化研究[D].上海:上海大学,2011. WANG W. Precipitation and structural evolution of copper-rich nano phases in reactor pressure vessel model steels [D]. Shanghai: Shanghai University, 2011.
[1] 任魏巍, 邹林池, 张兴峰, 符殿宝, 陈俊锋. 7050铝合金时效成形中应力松弛行为与回弹方程[J]. 材料工程, 2016, 44(9): 89-95.
[2] 谢孝昌, 李旭东, 汤春峰, 付书红. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程, 2016, 44(2): 88-93.
[3] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[4] 张杰, 闫志峰, 王文先, 王志斌, 王凯, 张红霞, 张心保. 拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测[J]. 材料工程, 2015, 43(2): 79-84.
[5] 赵凯, 何玉怀, 刘新灵, 陶春虎. 拉弯扭比例加载下50CrVA弹簧钢的多轴疲劳寿命及损伤特征[J]. 材料工程, 2014, 0(12): 99-103.
[6] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[7] 沙桂英, 韩玉, 刘腾, 李朝华, 王杰. 应力幅对退火态Mg-3Al-2Sc合金疲劳行为的影响[J]. 材料工程, 2012, 0(12): 24-28.
[8] 冯全, 赵迪, 黄新跃, 张志华, 王亮, 张燕明. 一个高温持久/蠕变测控温及试验管理系统[J]. 材料工程, 2011, 0(7): 70-74.
[9] 段秋琦, 栾庆冬, 刘静, 王晓光, 彭良明. 合金化对定向凝固Ti-Al-Nb合金微观结构与力学性能的影响[J]. 材料工程, 2011, 0(3): 82-86.
[10] 龙宪海, 阳能军, 王汉功. 基于声发射技术的30CrMnSi钢断裂机理研究[J]. 材料工程, 2011, 0(1): 17-22.
[11] 李梦丽, 王威强, 李爱菊, 崔好选, 陈忠友. 热处理避免和消除20钢厚壁高压管应变时效脆化实验研究[J]. 材料工程, 2011, 0(1): 57-63.
[12] 张伟, 刘慧, 梁芳慧, 黄永玲. 定向结晶对多孔股骨柄室温拉伸性能的影响[J]. 材料工程, 2009, 0(9): 13-15,19.
[13] 冯抗屯, 沙爱学, 王庆如. 显微组织对TC18钛合金应力控制低周疲劳性能的影响[J]. 材料工程, 2009, 0(5): 53-56.
[14] 薛红前, 杨斌堂, C. Bathias. 高频载荷下高强钢的超高周疲劳及热耗散研究[J]. 材料工程, 2009, 0(3): 49-53.
[15] 张修丽, 孙晓慧, 李明扬. 中温回复下疲劳Cu单晶体驻留滑移带的演变[J]. 材料工程, 2009, 0(1): 15-18.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持