Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (7): 87-92    DOI: 10.11868/j.issn.1001-4381.2015.07.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
θ投影法和复合模型在预测耐热钢蠕变行为的比较分析
江冯, 李萍, 程从前, 刘春慧, 赵杰()
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Comparative Analysis of Creep Behavior Prediction of Heat Resistant Steel Based on Theta Projection and Composite Model
Feng JIANG, Ping LI, Cong-qian CHENG, Chun-hui LIU, Jie ZHAO()
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(3181 KB)   HTML ( 45 )  
输出: BibTeX | EndNote (RIS)      
摘要 

比较分析了复合模型法和θ投影法在描述P92钢蠕变行为时的差异.结果表明:两者在拟合P92钢蠕变-时间关系曲线上均有较高的精度,但在描述蠕变速率-时间曲线上,θ投影法呈现较大的误差而复合模型则有良好的关联结果.在外推蠕变速率时,θ投影法的外推结果发生较大偏折,而复合模型的预测结果更接近实际变化趋势.基于蠕变曲线外推持久寿命的结果表明:5%~50%范围内的断裂应变对寿命预测结果影响较小,两种模型预测的持久寿命值之间也相差不大.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江冯
李萍
程从前
刘春慧
赵杰
关键词 θ投影法复合模型蠕变速率寿命预测    
Abstract

The difference of the creep curves of P92 steel was comparatively analyzed by theta projection method and composite model. The results show that both the creep-time curves of P92 steel with two methods have a higher accuracy. However, when describing the creep rate-time curves, the theta projection method exhibits big error, while, the composite model can show more accurate results; When extrapolating creep rate, the theta projection method has large deflection, while, the composite model can predict more near the actual trend. When extrapolating creep rupture life based on creep curves,the results show that the fracture strain between 5% and 50% has little effect on the life prediction. The values of endurance life extrapolated by the two models are approximately the same.

Key wordsθ projection    composite model    creep rate    life prediction
收稿日期: 2014-03-21      出版日期: 2015-07-27
基金资助:国家自然科学基金(51134013,51171037)
通讯作者: 赵杰     E-mail: jiezhao@dlut.edu.cn
作者简介: 赵杰(1964-),男,博士,教授,主要从事材料的力学性能(常温、疲劳断裂、高温蠕变)、强度及可靠性、材料变形机制与组织结构关系的研究,联系地址:大连理工大学材料科学与工程学院(116024),E-mail:jiezhao@dlut.edu.cn
引用本文:   
江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
Feng JIANG, Ping LI, Cong-qian CHENG, Chun-hui LIU, Jie ZHAO. Comparative Analysis of Creep Behavior Prediction of Heat Resistant Steel Based on Theta Projection and Composite Model. Journal of Materials Engineering, 2015, 43(7): 87-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.07.015      或      http://jme.biam.ac.cn/CN/Y2015/V43/I7/87
Fig.1  蠕变模型拟合的曲线与实验数据的对比
(a)蠕变曲线;(b)蠕变速率曲线
Fig.2  基于θ投影法和复合模型预测最小蠕变速率与实测值的对比分析
Fig.3  基于θ投影法和复合模型外推应力与最小蠕变速率的对比分析
Fig.4  不同应变时外推最小蠕变速率与时间曲线
(a)θ投影法;(b)复合模型
Fig.5  两模型预测最小蠕变速率的相对误差与时间的关系
Fig.6  断裂应变与温度和应力之间的关系
Fig.7  不同蠕变应变下,预测持久性能曲线与实验值和ASMEGr92数据对比分析
(a) θ投影法;(b)复合模型
1 LARSON F R, MILLER J A time-temperature relationship for rupture and creep stress[J]. ASME Trans, 1952, 74 (5): 765- 771.
2 ORR R L, SHERBY O D, DORN J E Correlation of rupture data for metals at elevated temperatures[J]. ASME Trans, 1954, 76 (1): 113- 128.
3 刘春慧, 程从前, 赵杰, 等 MHZ常数在耐热钢持久性能预测中的应用[J]. 材料工程, 2012, (10): 12- 16.
3 LIU C H, CHENG C Q, ZHAO J, et al Prediction of creep rupture property using MHZ constant for heat resistant steel[J]. Journal of Materials Engineering, 2012, (10): 12- 16.
4 张俊善. 材料强度学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004.
4 ZHANG J S. Strength of Materials[M]. Harbin: Harbin Institute of Technology Press, 2004.
5 KIM W G, YIN S N, KIM Y W, et al Creep characterization of a Ni-based Hastelloy-X alloy by using theta projection method[J]. Engineering Fracture Mechanics, 2008, 75 (17): 4985- 4995.
6 孙海生, 徐彤, 关凯书 Omega 蠕变寿命评估方法及应用[J]. 压力容器, 2012, 29 (9): 19- 23.
6 SUN H S, XU T, GUAN K S Description and application of omega creep life assessment[J]. Pressure Vessel Technology, 2012, 29 (9): 19- 23.
7 GRAHAM A, WALLES K F A Relationships between long and short-time creep and tensile properties of a commercial alloy[J]. Journal of the Iron and Steel Institute of Japan, 1955, 179 (12): 105- 120.
8 杨王玥, 李志文 θ法预测 12Cr1MoV 钢主蒸汽管道材料剩余寿命[J]. 金属学报, 1999, 35 (7): 721- 725.
8 YANG W Y, LI Z W The residual life evaluation for main steam pipe of 12Cr1MoV steel in power plant by the θ projection concept[J]. Acta Metallurgica Sinica, 1999, 35 (7): 721- 725.
9 LBARRA S, KONET R R Life assessment of 11/4 Cr-1/2 Mo steel catalytic reformer furnace tubes using the MPC omega method[J]. Journal of Pressure Vessel Technology, 1995, 117 (19): 19- 23.
10 OIKAWA H, MARUYAMA K Prediction of long-term creep curves[J]. Fusion Engineering and Design, 1992, 19 (4): 321- 328.
11 SANDSTROM R Basic model for primary and secondary creep in copper[J]. Acta Materialia, 2012, 60 (1): 314- 322.
12 ESPOSITO L, BONORA N Primary creep modeling based on the dependence of the activation energy on the internal stress[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 2012, 134 (6): 061401- 1.
13 CHEN G L, GUO H, SUN J Y, et al Extrapolation model of high temperature creep for 12CrMoV steel[J]. Pressure Vessel Technology, 2011, 28 (8): 11- 15.
14 黄硕, 万敏, 黄霖, 等 铝合金蠕变试验及本构模型建立[J]. 航空材料学报, 2008, 28 (1): 93- 96.
14 HUANG S, WAN M, HUANG L, et al Aluminum alloy creep test and its constitutive modeling[J]. Journal of Aeronautical Materials, 2008, 28 (1): 93- 96.
15 RAY A K, DIWAKAR K, PRASAD B N, et al Long term creep-rupture behavior of 813K exposed 2[J]. 25-1Mo steel between 773 and 873K[J]. Materials Science and Engineering A, 2007, 454-455 (25): 124- 131.
16 刘春慧. 超(超)临界用钢高温持久寿命外推方法的比较分析[D]. 大连: 大连理工大学, 2013.
16 LIU C H. Comparative analyses of life prediction methods for steels used in (ultra)super critical units[D]. Dalian: Dalian University of Technology, 2013.
17 KIMURA K, SAWADA K, KUBO K, et al. Influence of stress on degradation and life prediction of high strength ferritic steels [A]. ASME Pressure Vessel and Piping Division Conference Proceedings[C]. USA: ASME, 2004.11-18.
[1] 陈亚军, 徐鹏达, 王付胜, 刘辰辰. 基于DIC的铝合金薄壁缺口件多轴疲劳行为[J]. 材料工程, 2021, 49(1): 168-176.
[2] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[3] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[4] 许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
[5] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[6] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[7] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[8] 张果, 杜军, 李文芳, 豆琦, 蔡添祥. Ca和La对Mg-5Sn-2Si合金组织和蠕变性能的影响[J]. 材料工程, 2013, 0(4): 81-84.
[9] 刘春慧, 程从前, 赵杰, 祝志超, 马海涛. MHZ常数在耐热钢持久性能预测中的应用[J]. 材料工程, 2012, 0(10): 12-16.
[10] 赵杰, 李东明, 方园园. Manson-Haferd常数的选择及在蠕变持久寿命预测中的应用[J]. 材料工程, 2009, 0(6): 30-34.
[11] 许超, 张国栋, 苏彬. 高周疲劳和低周疲劳统一的能量表征方法研究[J]. 材料工程, 2007, 0(8): 65-68,72.
[12] 高宏波, 谢守明, 赵杰, 王来, 韩双起. 12Cr1MoV钢组织转变与剩余寿命预测[J]. 材料工程, 2005, 0(3): 40-42.
[13] 朱华, 张洪雁, 杨希仁, 章菊华. 计算机辅助航空橡胶和密封剂老化寿命预测[J]. 材料工程, 2001, 0(7): 45-46.
[14] 金尧, 孙亚芳, 孙训方, 邓勇, 刘洪杰, 屠勇. 金属蠕变律及蠕变行为研究[J]. 材料工程, 2001, 0(1): 40-42.
[15] 郭宏, 张文泉, 任慧平. 高温构件蠕变寿命预测新方法[J]. 材料工程, 2000, 0(2): 34-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn