Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (8): 1-6    DOI: 10.11868/j.issn.1001-4381.2015.08.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
CNTs/Al5083复合材料力学性能及增强机制
李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤
昆明理工大学 冶金与能源工程学院, 昆明 650093
Mechanical Property and Enhancement Mechanism of Aluminum 5083 Composites with Carbon Nanotubes
LI Zheng, CAI Xiao-lan, ZHOU Lei, YI Feng, YU Ming-jun, ZHANG Wen-zhong, GUO Li
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(3510 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用高能球磨和冷轧工艺制备出3%(质量分数)碳纳米管增强Al5083复合材料。利用SEM,TEM观察球磨后复合粉末表面形貌,采用拉曼光谱和XRD对复合粉末和成型后的材料进行物相分析。最后测试了复合材料的力学性能。结果表明:在球磨1.5h的复合粉体中CNTs分散均匀,结构较完整,部分嵌入Al基体中并结合良好。冷压烧结并冷轧成型后的复合材料力学性能表现优异,球磨1.5h下,复合材料抗拉强度和屈服强度分别达到278MPa和247MPa,断裂延伸率为0.07,硬度HV达到95。将热不匹配模型与奥罗万模型所预测的屈服强度与实验值进行对比,结果表明CNTs/Al5083复合材料符合奥罗万机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李铮
蔡晓兰
周蕾
易峰
余明俊
张文忠
郭鲤
关键词 金属基复合材料高能球磨碳纳米管冷轧    
Abstract:The composite materials of 3%(mass fraction)carbon nanotubes(CNTs)/Al5083 were fabricated by high-energy ball milling and cold rolling. The surface morphology of the composite powder of ball milled was observed using SEM and TEM, the phase of composite powder and composite material were analyzed by Raman spectrum and XRD.Finally, the mechanical properties of composite material were tested.The results show that, the CNTs have a good structure and are well-distributed in the for 1.5h milled aluminum matrix. The composite material exhibits high strength for the tensile strength of 278MPa, yield strength of 247MPa and elongation rate of 0.07, Vickers hardness of 95. Compared with the predicted value of yield strength by thermal mismatch model and Orowan model, the experiment value indicates that the mechanism of CNTs/Al5083 accords with Orowan mechanism.
Key wordsmetal matrix composite    high-energy ball milling    carbon nanotube    cold rolling
收稿日期: 2013-12-01      出版日期: 2015-08-17
1:  TB331  
通讯作者: 蔡晓兰(1965-),女,教授,从事专业:粉体材料制备,联系地址:云南省昆明市学府路296号昆明理工大学冶金与能源工程学院(650093),E-mail:CXL9761@163.com     E-mail: CXL9761@163.com
引用本文:   
李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
LI Zheng, CAI Xiao-lan, ZHOU Lei, YI Feng, YU Ming-jun, ZHANG Wen-zhong, GUO Li. Mechanical Property and Enhancement Mechanism of Aluminum 5083 Composites with Carbon Nanotubes. Journal of Materials Engineering, 2015, 43(8): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.001      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/1
[1] PARK Y, CHO K, PARK I, et al. Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes[J]. Procedia Engineering,2011,10:1446-1450.
[2] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters,2000,84(20):4613-4614.
[3] ZHONG R, CONG H, HOU P. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon,2003,41(4):848-851.
[4] KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J].Carbon,2009,47(3):570-577.
[5] LAHA T, KUCHIBHATLA S, SEAL S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite[J]. Acta Materialia,2007,55(3):1059-1066.
[6] CHOI H J, MIN B H, SHIN J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing,2011,42(10):1438-1444.
[7] SRIDHAR I, NARAYANAN K R. Processing and characterization of MWCNT reinforced aluminum matrix composites[J]. Journal of Materials Science,2009,44(7):1750-1756.
[8] YOO S J, HAN S H, KIM W J. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J].Scripta Materialia,2013,68(9):711-714.
[9] KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J].Carbon,2009,47(3):570-577.
[10] LIAO J Z, TAN M J. Mixing of carbon nanotubes(CNTs) and aluminum powder for powder metallurgy use[J]. Powder Technology,2011,208(1):42-48.
[11] HE C, ZHAO N, SHI C, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials,2007,19(8):1128-1132.
[12] 袁晓敏,严家武,何宜柱.激光熔铸多壁碳纳米管增强铝基复合材料[J]. 焊接学报,2006,27(6):17-20. YUAN Xiao-min, YAN Jia-wu, HE Yi-zhu. Multi-walled carbon nanotubes reinforced aluminum matrix composites prepared by laser casting[J]. Transactions of the China Welding Institution,2006,27(6):17-20.
[13] BAKSHI S R, SINGH V, SEAL S, et al. Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders[J]. Surface & Coatings Technology,2009,203(10):1544-1554.
[14] LIAO J Z, TAN M J, SANTOSO A. High strength aluminum nanocomposites reinforced with multi-walled carbon nanotubes[J]. Advanced Materials Research,2011,311:80-83.
[15] SUL I H, YOUN J R, SONG Y S. Quantitative dispersion evaluation of carbon nanotubes using a new analysis protocol[J].Carbon,2011,49(4):1473-1478.
[16] MORSI K, ESAWI A, BORAH P, et al. Characterization and spark plasma sintering of mechanically milled aluminium-carbon nanotube(CNT) composite powders[J]. Journal of Composite Materials,2010,44(16):1991-2003.
[17] KIM W J, YU Y J. The effect of the addition of multi-walled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites[J]. Scripta Materialia,2014,72:25-28.
[18] AIKIN R M Jr, CHRISTODOULOU L. The role of equiaxed particles on the yield stress of composites[J]. Scripta Metallurgica et Materialia,1991,25(1):9-14.
[1] 王重, 林万明, 马胜国, 杨慧君, 梁红玉, 乔珺威. 冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响[J]. 材料工程, 2015, 43(8): 50-55.
[2] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[3] 代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
[4] 何天兵, 胡仁伟, 何晓磊, 李沛勇. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10): 91-101.
[5] 刘顾, 汪刘应, 程建良, 王炜, 吴永发. 碳纳米管吸波材料研究进展[J]. 材料工程, 2015, 43(1): 104-112.
[6] 陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, 0(11): 55-61.
[7] 周泽华, 辛勇, 曾效舒. CNT/铸钢复合材料表面CNT的结构变化[J]. 材料工程, 2014, 0(10): 96-100.
[8] 毛大恒, 赵苏琨, 李建平, 扶宗礼, 石琛. 冷轧变形量对电磁/超声铸轧铝板织构和性能的影响[J]. 材料工程, 2013, 0(6): 12-17.
[9] 郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
[10] 冒丽, 吴华强, 张宁, 李明明, 李亭亭, 夏玲玲. 微波法制备组成可控Cu1-xNix/MWCNTs复合材料及其磁性能[J]. 材料工程, 2013, 0(10): 93-97.
[11] 王攀, 郑玉婴, 李宝铭, 张通. PVPy/MWNTs纳米复合材料的制备及其导电性能研究[J]. 材料工程, 2012, 0(7): 71-75.
[12] 严李李, 房现石, 梁永锋, 叶丰, 林均品. Fe-6.5%Si合金冷轧薄板的冲压性能[J]. 材料工程, 2012, 0(6): 28-31.
[13] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[14] 陈军洲, 黄敏, 戴圣龙. Al-Zn-Mg-Cu系铝合金厚板冷轧过程中的织构演变[J]. 材料工程, 2011, 0(5): 1-6.
[15] 曾大新, 陈玉莲. 碳纳米管-铜复合粉的制备[J]. 材料工程, 2010, 0(3): 96-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn