Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (8): 1-6    DOI: 10.11868/j.issn.1001-4381.2015.08.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
CNTs/Al5083复合材料力学性能及增强机制
李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤
昆明理工大学 冶金与能源工程学院, 昆明 650093
Mechanical Property and Enhancement Mechanism of Aluminum 5083 Composites with Carbon Nanotubes
LI Zheng, CAI Xiao-lan, ZHOU Lei, YI Feng, YU Ming-jun, ZHANG Wen-zhong, GUO Li
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(3510 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用高能球磨和冷轧工艺制备出3%(质量分数)碳纳米管增强Al5083复合材料。利用SEM,TEM观察球磨后复合粉末表面形貌,采用拉曼光谱和XRD对复合粉末和成型后的材料进行物相分析。最后测试了复合材料的力学性能。结果表明:在球磨1.5h的复合粉体中CNTs分散均匀,结构较完整,部分嵌入Al基体中并结合良好。冷压烧结并冷轧成型后的复合材料力学性能表现优异,球磨1.5h下,复合材料抗拉强度和屈服强度分别达到278MPa和247MPa,断裂延伸率为0.07,硬度HV达到95。将热不匹配模型与奥罗万模型所预测的屈服强度与实验值进行对比,结果表明CNTs/Al5083复合材料符合奥罗万机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李铮
蔡晓兰
周蕾
易峰
余明俊
张文忠
郭鲤
关键词 金属基复合材料高能球磨碳纳米管冷轧    
Abstract:The composite materials of 3%(mass fraction)carbon nanotubes(CNTs)/Al5083 were fabricated by high-energy ball milling and cold rolling. The surface morphology of the composite powder of ball milled was observed using SEM and TEM, the phase of composite powder and composite material were analyzed by Raman spectrum and XRD.Finally, the mechanical properties of composite material were tested.The results show that, the CNTs have a good structure and are well-distributed in the for 1.5h milled aluminum matrix. The composite material exhibits high strength for the tensile strength of 278MPa, yield strength of 247MPa and elongation rate of 0.07, Vickers hardness of 95. Compared with the predicted value of yield strength by thermal mismatch model and Orowan model, the experiment value indicates that the mechanism of CNTs/Al5083 accords with Orowan mechanism.
Key wordsmetal matrix composite    high-energy ball milling    carbon nanotube    cold rolling
收稿日期: 2013-12-01      出版日期: 2015-08-17
中图分类号:  TB331  
通讯作者: 蔡晓兰(1965-),女,教授,从事专业:粉体材料制备,联系地址:云南省昆明市学府路296号昆明理工大学冶金与能源工程学院(650093),E-mail:CXL9761@163.com     E-mail: CXL9761@163.com
引用本文:   
李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
LI Zheng, CAI Xiao-lan, ZHOU Lei, YI Feng, YU Ming-jun, ZHANG Wen-zhong, GUO Li. Mechanical Property and Enhancement Mechanism of Aluminum 5083 Composites with Carbon Nanotubes. Journal of Materials Engineering, 2015, 43(8): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.08.001      或      http://jme.biam.ac.cn/CN/Y2015/V43/I8/1
[1] PARK Y, CHO K, PARK I, et al. Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes[J]. Procedia Engineering,2011,10:1446-1450.
[2] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters,2000,84(20):4613-4614.
[3] ZHONG R, CONG H, HOU P. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon,2003,41(4):848-851.
[4] KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J].Carbon,2009,47(3):570-577.
[5] LAHA T, KUCHIBHATLA S, SEAL S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite[J]. Acta Materialia,2007,55(3):1059-1066.
[6] CHOI H J, MIN B H, SHIN J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing,2011,42(10):1438-1444.
[7] SRIDHAR I, NARAYANAN K R. Processing and characterization of MWCNT reinforced aluminum matrix composites[J]. Journal of Materials Science,2009,44(7):1750-1756.
[8] YOO S J, HAN S H, KIM W J. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J].Scripta Materialia,2013,68(9):711-714.
[9] KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J].Carbon,2009,47(3):570-577.
[10] LIAO J Z, TAN M J. Mixing of carbon nanotubes(CNTs) and aluminum powder for powder metallurgy use[J]. Powder Technology,2011,208(1):42-48.
[11] HE C, ZHAO N, SHI C, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials,2007,19(8):1128-1132.
[12] 袁晓敏,严家武,何宜柱.激光熔铸多壁碳纳米管增强铝基复合材料[J]. 焊接学报,2006,27(6):17-20. YUAN Xiao-min, YAN Jia-wu, HE Yi-zhu. Multi-walled carbon nanotubes reinforced aluminum matrix composites prepared by laser casting[J]. Transactions of the China Welding Institution,2006,27(6):17-20.
[13] BAKSHI S R, SINGH V, SEAL S, et al. Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders[J]. Surface & Coatings Technology,2009,203(10):1544-1554.
[14] LIAO J Z, TAN M J, SANTOSO A. High strength aluminum nanocomposites reinforced with multi-walled carbon nanotubes[J]. Advanced Materials Research,2011,311:80-83.
[15] SUL I H, YOUN J R, SONG Y S. Quantitative dispersion evaluation of carbon nanotubes using a new analysis protocol[J].Carbon,2011,49(4):1473-1478.
[16] MORSI K, ESAWI A, BORAH P, et al. Characterization and spark plasma sintering of mechanically milled aluminium-carbon nanotube(CNT) composite powders[J]. Journal of Composite Materials,2010,44(16):1991-2003.
[17] KIM W J, YU Y J. The effect of the addition of multi-walled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites[J]. Scripta Materialia,2014,72:25-28.
[18] AIKIN R M Jr, CHRISTODOULOU L. The role of equiaxed particles on the yield stress of composites[J]. Scripta Metallurgica et Materialia,1991,25(1):9-14.
[1] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[4] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[5] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[6] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[7] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[8] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[9] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[10] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[11] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[12] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[13] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[14] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[15] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn